Quantifying Translational Equivalence: The Usability of Language Technology Methods and Parallel Corpora in Bilingual Lexicography

Enikő Héja

Dept. of Theoretical Linguistics

Eötvös Loránd University

A thesis submitted for the degree of

Philosophiae Doctor

2015 June
1. Reviewer:

2. Reviewer:

Day of the defense:

Signature from head of PhD committee:
In order to say what a meaning is, we may first ask what a meaning does, and then find something that does that.

——— David Lewis (56)

In order to say what a translation relation is, we may first ask what the translation relation does, and then find something that does that.

——— Based on David Lewis (56)
Abstract

Put your abstract or summary here, if your university requires it.
To my family
Acknowledgements

I would like to acknowledge the thousands of individuals who have coded for the LaTeX project for free. It is due to their efforts that we can generate professionally typeset PDFs now.
Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Motivation 1

1.2 Research goals 2

1.3 Theses 5

1.3.1 General result 5

1.3.2 Theoretical results 6

1.3.2.1 Vocabularies A and B 6

1.3.2.2 Translation relation ρ 6

1.3.2.3 Encoding dictionaries 8

1.3.2.4 Coverage 9

1.3.3 Practical results 10

1.3.4 Economical results 11

1.4 Framework 11

1.5 Structure of the Thesis 13
2 Compiling the Headword List

2.1 Introduction ... 15

2.2 The Dictionary Building Process 16

2.2.1 The task .. 16

2.2.2 The building process 18

2.3 Sense Inventories and Language Data 19

2.3.1 Traditional lexicography 20

2.3.1.1 Monolingual explanatory dictionaries 21

2.3.1.2 Wordnets .. 22

2.3.1.3 Concluding remarks 24

2.3.2 Corpus-based lexicography 27

2.3.2.1 COBUILD .. 27

2.3.2.2 Explanatory combinatorial dictionaries (ECD) ... 28

2.3.2.3 Levin verb classes 31

2.3.2.4 FrameNet ... 33

2.3.2.5 Corpus Pattern Analysis 37

2.3.2.6 Referencie Bestand Nederlands 39

2.3.2.7 Lexical profiling: Sketch Engine 40

2.3.2.8 Concluding remarks 42

2.3.3 Corpus-driven lexicography 46

2.3.3.1 Unsupervised extraction of verb frames 47

2.3.3.2 Synonymy detection: Sketch Engine’s thesaurus . 48

2.3.3.3 Synonymy detection: Near-synonyms for adjectives 49
2.3.3.4	Bilingual lexicography: Detection of translation pairs in monolingual corpora	55
2.3.3.5	Bilingual lexicography: Lexicon extraction from parallel corpora	56
2.3.3.6	Concluding remarks	57
2.4	Conclusion	57
3	**The Translation Phase**	61
3.1	Introduction	61
3.2	Translation Equivalency: The Best Translations	62
3.2.1	Relation between SL and TL headwords (Q1):	63
3.2.1.1	Translation relation is closeness	63
3.2.1.2	Arguments against interchangeability	64
3.2.1.3	Discussion of the arguments	65
3.2.2	Types of translation equivalency (Q2):	67
3.2.2.1	Gradual nature of the translation relation	69
3.2.3	Is equivalence discovered or created? (Q3)	71
3.2.4	Expectations toward the automatically attained translation relation	72
3.3	Linking monolingual sense-inventories	73
3.3.1	Introduction	73
3.3.2	Reversibility	74
3.3.2.1	The CLVV Project	75
3.3.3	Linking monolingual databases via a hub	76
3.3.3.1	Hub-and-spoke model	76
CONTENTS

4.3.7 Economical considerations ... 112
4.4 Difficulties ... 113
4.5 Conclusions ... 114

5 Selecting the Alignment Techniques 121

5.1 Introduction ... 121
5.2 Sentence Alignment Techniques ... 122
5.3 Dictionary Extraction Techniques 124
 5.3.1 Association Approaches ... 124
 5.3.2 Estimation Approaches ... 125
 5.3.3 Estimating the model parameters (The expectation maximization algorithm) ... 128
 5.3.4 Pros and Cons .. 129

6 Proof-of-Concept Experiments: One-Token Units 131

6.1 Introduction ... 131
6.2 Workflow ... 132
 6.2.1 Creation of Parallel Corpora ... 132
 6.2.2 Creation of Proto-Dictionaries 134
 6.2.3 Evaluation of the Hungarian-Lithuanian Proto-Dictionary ... 137
6.3 Treatment of Multiple Meanings ... 139
 6.3.1 Example 1: Puikus ... 140
 6.3.2 Example 2: Aiškiai ... 140
6.4 A Uniform Corpus Representation 141
CONTENTS

6.4.1 Workflow — uniform corpus representation 143
6.4.2 Results . 144
6.5 Conclusion . 145
6.6 Appendix: The Morphosyntactic Annotation 148

7 Extracting Parallel Verbal Structures 153
7.1 Introduction . 153
7.2 Description of the Extraction Method 156
 7.2.1 Conversion of input corpora 156
 7.2.2 The algorithm . 158
7.3 Parallel verbal structures and shallow parsed corpus 158
 7.3.1 Semi-automatic Extraction of Verbal Structures 159
 7.3.1.1 The scope of investigated verbs 159
 7.3.1.2 Conversion of the input corpus 160
 7.3.2 Manual Selection of Relevant Verbal Structures 161
 7.3.3 Creating the Proto-Dictionary 163
 7.3.4 Results . 165
 7.3.5 Discussion . 166
7.4 Parallel verbal structures and deep parsed corpus 168
 7.4.1 Workflow . 168
 7.4.2 The automatic extraction of verbal structures 172
 7.4.3 The creation of proto-dictionaries 177
 7.4.4 Evaluation . 178
7.5 Conclusion . 183
8 The Dictionary Query System

8.1 Introduction ... 187

8.2 What type of information should be ideally included in the dictionary? ... 188
 8.2.1 Lemma headword ... 188
 8.2.2 Meaning and translation in bilingual dictionaries 189
 8.2.3 Sense indicators .. 190
 8.2.4 Grammar .. 191
 8.2.5 Contexts .. 193
 8.2.6 Vocabulary types .. 193
 8.2.7 Usage ... 193
 8.2.8 Other lemmas ... 194
 8.2.9 Conclusion ... 195

8.3 DQS: Dictionary Browser ... 195
 8.3.1 One-token units ... 196
 8.3.2 Two-token expressions 197

8.4 DQS: Cut Board .. 199
 8.4.1 Trade-off between precision and recall 199
 8.4.2 Customization: Cut Board 202
 8.4.3 Implementation ... 206

8.5 Conclusions and Future Work .. 207

9 Conclusions and Future Work .. 209

9.1 Conclusions ... 209
 9.1.1 Research goals ... 210
CONTENTS

9.1.2 Summary of the dissertation .. 212
 9.1.2.1 Chapter 2: Compiling the headword list 212
 9.1.2.2 Chapter 3: The translation phase 213
 9.1.2.3 Chapter 4: Encoding dictionaries 215
 9.1.2.4 Chapter 5: Selecting the alignment techniques 216
 9.1.2.5 Chapter 6: Proof-of-concept experiments 216
 9.1.2.6 Chapter 7: Extracting parallel verbal structures ... 219
 9.1.2.7 Chapter 8: The Dictionary Query System 221

9.2 Future Work .. 223

References ... 225
List of Figures

2.1 The workflow of dictionary building .. 19
2.2 A synset of Princeton WordNet 3.0 .. 23
2.3 Subgraphs representing polysemous meanings of the Hungarian
word *nagy* ... 52
3.3 Translations of English LUs to German and back 64
3.4 Mapping between the SL vocabulary A and the TL vocabulary B 65
3.5 The three types of translation relation 71
3.6 Dictionary building: Linking .. 73
3.7 Possible approaches to building a bilingual dictionary 80
4.1 A synset of Princeton WordNet 3.0 .. 92
4.2 A disambiguation rule ... 93
4.3 An example sentence of SEMCOR 2.1 94
4.4 Occurrences of *have* in various synsets of Princeton WordNet 3.0 95
4.5 Partition over the occurrences of *nail* 96
4.6 $P(A|B)$ if $P(B) = 1$.. 102
4.7 A and B are ”almost” cognitive equivalents 103
LIST OF FIGURES

4.8 Venn diagram of the translations of ámbár 104
4.9 Alignment between words of an English sentence and its German translation .. 105
4.10 Partition over B .. 107
6.1 The basic process of proto-dictionary generation 133
7.2 A passive-active conversion .. 171
7.3 Participle structure as an additional clause 172
7.4 Distribution of French-Dutch translation candidates 179
7.5 The distribution of French frames 180
7.6 Distribution of the translation candidates 182
8.1 Specifiers and collocators of the headword clear in the Oxford-Hachette French Dictionary (Ormal-Grenon & Pomier [74]) 191
8.2 The Dictionary Browser .. 196
List of Tables

4.1 Sample entry of the automatically generated Hungarian-Lithuanian proto-dictionary – *to be born* .. 115

5.1 Overview of the alignment models .. 127

6.1 Size of the parallel corpora .. 134

6.2 Incorrect candidates with high translational probabilities 135

6.3 Expected number of correct translations 136

6.4 Results of the Hungarian-Lithuanian proto-dictionary 138

6.5 Example 1: Hungarian equivalents of the Lithuanian word *puikus* sorted by the translational probability. 139

6.6 Example 2 ... 141

6.7 The sizes of the resulting XML parallel corpora in terms of tokens, sentences and translation units 145

6.8 Hungarian case suffixes ... 148

6.9 Hungarian part-of-speeches .. 148

6.10 Lithuanian cases and genders .. 149

6.11 Lithuanian part-of-speech categories 149

6.12 Tag-set in the Penn Treebank .. 150
LIST OF TABLES

6.13 Slovenian cases .. 151
6.14 Slovenian part-of-speech categories 151

7.1 A sample entry from the French-Dutch verbal proto-dictionary. . 155
7.2 French verbs and their Dutch translations. The number of verbal structure types. .. 160
7.3 Data in the verbal proto-dictionary 164
7.4 Incorrect translation candidates 164
7.5 Example 1 .. 166
7.6 Example 2 .. 167
7.7 The four most frequent structure of the Dutch verb *gebruiken* . 173
7.8 The four most frequent structure of the Dutch verb 'geven' . . 174
7.9 Ambiguous analysis of the Dutch expression *een beroep doen op* . 174
7.10 A sample of Dutch verbal structures 175
7.11 Number of verb and frame types for Dutch and French . . 177
7.12 A sample entry from the French-Dutch verbal proto-dictionary. . 178
7.13 Translation equivalents with one dependent and one lexical head . 179

8.1 Evaluation results of the refined French-Dutch proto-dictionary. . 201
8.2 Evaluation results of the refined Hungarian-Lithuanian proto-dictionary. 202
1

Introduction

1.1 Motivation

The oldest known bilingual dictionaries were Sumerian–Akkadian word lists dated back roughly 2300 BCE\footnote{See, for instance, http://www.historyofinformation.com/expanded.php?id=2456}. Although the history of bilingual lexicography spans at least over 4300 years and bilingual dictionaries form an integral part of our every-day life, no extensive consensus has been reached so far with regard to the fundamental notions of lexicography, such as meaning and translation relation.

Nevertheless, in spite of the obscurity of the fundamental notions of bilingual lexicography, enormous amount of effort and time are invested into the production of new dictionaries and to keep up-to-date old ones. Compilation of bilingual dictionaries requires widespread expertise, including the appropriate knowledge of the relevant languages and of lexicography alike.

Accordingly, the motivation of this PhD thesis is twofold: Our basic objective is to find a cost-effective method which is able to facilitate lexicographers’ work and to investigate to what extent it meets the expectations put forward by metalexicography toward the editing principles of a dictionary.

The increasing amount of language data available in electronic format and the appearance of new data processing techniques open up new perspectives even for
1. INTRODUCTION

such a widely studied field as lexicography. Therefore, the scope of this thesis is to explore to what extent language technology methods are able to facilitate the creation of bilingual dictionaries so that it correspond to the above requirements.

1.2 Research goals

In parallel with the increasing body of research in the field of machine translation, much attention has been paid to the automatic compilation of bilingual lexicons. There are several strategies to obtain translation pairs to create new bilingual lexicons or to extend existing ones. Nevertheless, these techniques were invented prevalently for the purpose of machine translation or for other natural language processing tasks, thus, somewhat surprisingly, current lexicographic practice does not reflect the achievements of these related fields. As far as we know, there are a few research projects (e.g. Lindemann (57)) investigating the potential in automatic bilingual dictionary compilation, but there are no larger scale projects exploiting these techniques we are aware of. The aim of the present dissertation is to explore to what degree these relatively novel procedures are compatible with the usual practice and underlying theories of lexicography.

The main contribution to the research field The most important contribution of the present thesis to natural language processing and to multilingual computational lexicography is that the automatic estimation of translation pairs on the basis of parallel corpora using conditional probabilities is not only a cost-effective way of generating bilingual lexicons, but it is able to grasp the notion of translation in terms of quantifiable data, moreover, this conception of translation is compatible with the usual interpretation of translation in bilingual lexicography.

Conditional probability as translation relation As far as we know, the use of conditional probability as translation relation is usually motivated by its performance in the field of NLP, that is, there is no real lexicographical or translational insights behind the selection of this very measure to extract translation
1.2 Research goals

pairs from bilingual texts. On the other hand, bilingual lexicography and transl-lationology came up with a handful of expectations concerning translation relation resulting in a fragmented and somewhat obscure conception of it. Consequently, the novelty of the present dissertation with regard to translation relation comes from connecting the two research fields: It is claimed that conceiving translation relation as conditional probability is able to lump together the various types of translation relation by turning it into a quantifiable notion. Therefore, translation relation as conditional probability is able to grasp essential insights of bilingual lexicography.

Methodological notes However, it is important to note that the title of the dissertation might be somewhat misleading as it may imply that various language technology methods are empirically tested and the results are compared in some dictionary building tasks. Albeit–not surprisingly–this empirical approach seems to be prevalent in the natural language processing literature, we have decided to follow a more deductive methodological approach here. Accordingly, we have laid greater emphasis on the clarification of the basic notions in bilingual lexicography, such as meaning and translation relation. Thus, by the end of the first part of the dissertation it will be confirmed that the notion of conditional probability is able to grasp translational relation and not because it yields better results but because it fits into the conceptual framework of translation in the context of bilingual dictionaries.

Therefore, the present PhD thesis is made up of two main parts: In the first part we start out from a general definition of dictionaries, and give a theoretic overview on the fundamental notions of bilingual lexicography. The second part puts the findings achieved by then into practice and investigates the pros and cons of the selected technique.

General definition of bilingual dictionaries Our investigations start out from the most general definition of bilingual dictionaries: Let us suppose that a dictionary is a relation in the mathematical sense. More precisely, let A be the source language (SL) vocabulary and B the target language (TL) vocabulary. In this case, the dictionary is $\rho \subseteq A \times B$, i. e. it is a set of ordered pairs (a, b) so that $a \in A$ and $b \in B$.

3
1. INTRODUCTION

Encoding and decoding dictionaries Nevertheless, it should be emphasized that this general definition of bilingual dictionaries is excessively oversimplifying, as it is unable to reflect essential divergencies in their editing principles, which are obviously affected by the purpose of the dictionaries. From a user perspective, encoding (active) and decoding (passive) dictionaries can be told apart. Encoding dictionaries provide speakers of the SL with information on how to express themselves in a foreign language. As opposed to encoding dictionaries, decoding dictionaries help the speakers of the TL to understand a foreign language, which is the SL in this case.

The ultimate questions On the basis of these definitions the present dissertation seeks answers to the following questions:

1. What type of entities constitute A and B? How could A and B be characterized?

2. Which expectations should ρ meet to be able to serve as translation relation?

As throughout this thesis we concentrate on the creation of encoding dictionaries\footnote{This choice is motivated by the observation that encoding dictionaries are more difficult to compile and they can be converted into decoding dictionaries.}, we also have to consider which additional requirements such a dictionary has to suffice, namely:

3. Does the creation of encoding dictionaries impose additional constraints on A and B?

4. Does the creation of encoding dictionaries impose additional constraints on ρ translation relation?

Proto-dictionaries After the clarification of the basic issues, the theory was put into practice and a method was selected, which corresponds to the answers to the above questions. Thus, dictionaries were built for two less-resourced language pairs (Hungarian-Lithuanian and Hungarian-Slovenian). These resources
were designed primarily for lexicographers’ to facilitate their work when creating bilingual dictionaries. The automatically generated bilingual resources will be referred to as *proto-dictionaries* henceforward. Note that proto-dictionaries were created fully automatically, thus, some suitable heuristics were introduced to filter the results. Three parameters were used for that purpose, the SL and TL lemma frequencies, and the corresponding conditional probabilities. We investigated to what extent proto-dictionaries meet the expectations put forward in the first part of the thesis and address the relating difficulties.

Coverage One essential issue that should be overcome concerns the coverage of the resulting dictionaries. Note that this problem emerges principally in the case of the less-resourced language pairs, which are the focus of the present research.

Multi-word expressions (MWEs) Though MWEs play an important part in the case of encoding bilingual dictionaries, which primarily aim at enabling the user to produce idiomatically correct TL text, the selected technique does not treat MWEs in itself. Thus, we should investigate whether the original method could be complemented with a module that recognizes MWE translation pairs.

Dictionary Query System (DQS) Finally, we intended to make proto-dictionaries readily available even for end-users. For doing so, a Dictionary Query System was designed and implemented that is able to take advantage of the novelties of proto-dictionaries and compensate for their shortcomings.

1.3 Theses

1.3.1 General result

(I) Although word alignment techniques on parallel corpora are widely used for the purpose of machine translation, until recently they have been hardly—if at all—used in lexicographic projects. The main finding of this thesis is that THE AUTOMATIC ESTIMATION OF TRANSLATION PAIRS ON THE BASIS OF PARALLEL CORPORA USING CONDITIONAL PROBABILITIES is
1. INTRODUCTION

particularly apt for lexicographic purposes for theoretical, practical and economical reasons.

1.3.2 Theoretical results

(II) From a theoretical perspective it is claimed that the automatic estimation of translation pairs on the basis of parallel corpora using conditional probabilities has certain benefits both over traditional and corpus-based lexicography, inasmuch it provides answers to some questions inherently present in both methodologies. The proposed method is able to define some of the fundamental notions of lexicography in terms of quantifiable corpus data.

1.3.2.1 Vocabularies A and B

What type of entities constitute A and B? How could A and B be characterized?

(III) Albeit the general view in lexicography takes form-meaning pairs as the atomic building blocks of dictionaries, it is argued that, if the proposed method is used, word forms may serve as the basic units for bilingual encoding dictionaries. This finding in turn eliminates the second question, as in this case we do not have to address the rather difficult problem of how to characterize meanings of word forms.

1.3.2.2 Translation relation ρ

Which expectations should ρ meet to be able to serve as translation relation?

Based on the literature it was found that the notion of translation relation is inhomogeneous inasmuch several sub-types of it may be distinguished. However, translation relation tends to be asymmetric and gradual. The scale spans from the perfect translation equivalency, where the corresponding SL and TL expressions
are interchangeable in every possible context, to translation equivalents that are fully dependent on the context.

(IV) It was investigated how the symmetry of translation relation can be interpreted. We found that if \(\rho \in A \times B \), i.e. if \(\rho \) is a relation in the mathematical sense, then the symmetry of translation relation means that \(\rho \) is an invertible function mapping from the SL vocabulary \(A \) to the TL vocabulary \(B \). It was also found that this definition is consistent with the cases when "symmetric translation relation" is exploited in practical lexicography, such as when designing reversible dictionaries or when applying the hub-and-spoke model.

(V) If translation relation is best to think of as a gradual notion, then we should be able to compare two possible translations of a given SL expression and to select the more appropriate one. That is, translation relation should be quantifiable. The strength of the translation equivalence could be measured by the number of contexts in which a TL expression appears as translation. This claim corresponds to the fact that perfect translation equivalents are defined as translation pairs that are interchangeable in every context, while on the other end of the scale, contextual translations appear only in a rather constrained set of contexts.

(VI) In our view, instead of mathematical relation, \(\rho \) translation relation should be conceived of as conditional probability, \(P(b|a) \), which gives an estimation of how many times the occurrences of \(a \in A \) are translated as an occurrence of \(b \in B \) on the basis of sentence aligned parallel corpora. We claim that conditional probability is a suitable mathematical construction to represent and to quantify over translation relation, since, as opposed to mathematical relation, it is able to reflect its gradual nature.

On top of that, interpreting translation relation as conditional probability enables the creation of high-quality encoding dictionaries.
1. INTRODUCTION

1.3.2.3 Encoding dictionaries

Recall the two corresponding questions:

Does the creation of encoding dictionaries impose additional constraints on A and B?

Does the creation of encoding dictionaries impose additional constraints on \(\rho \) translation relation?

By definition, in an encoding environment we are aware of the meaning of the SL expression and want to find the contextually best translation for it, i.e. the one that produces an idiomatically correct translation when put into TL contexts.

How do we know that we are ”aware of the meaning of the SL expression”? We consider the meaning of an expression known, if most native speakers assign the same meaning to it, when put into sufficiently specified contexts. This task is called word-sense disambiguation (WSD). WSD yielding a high agreement among annotators presupposes the existence of neatly characterized SL sense-inventories.

(VII) We found that the neatly characterized sense-inventory should exhibit certain properties to enable the annotators to achieve high agreement on the annotation task. Namely,

(i) First, it has to comprise abundant contextual information that enable annotators to select the appropriate meaning on the basis of explicit distributional information.

(ii) Each SL headword in the sense-inventory should be characterized in a way that each occurrence of the given headword could be clearly assigned to a unique meaning. That is, there is no such occurrence that may be assigned to two different meanings.

(iii) It is also presupposed that meanings in the SL sense-inventory are non-overlapping entities.

That is, if our presuppositions hold, a suitable SL sense-inventory for a high-quality encoding dictionary should be characterized in a way that the
various meanings of a word form create a partition in the mathematical sense over the occurrences of that word form.

(VIII) Unfortunately, such neatly characterized data-base usually is not available. Therefore, in the absence of such a sense-inventory an alternative way of creating high-quality encoding dictionaries should be found. An other alternative is that we disregard word senses and try to retrieve translations by creating a partition of TL word forms directly over a given SL word form. The conditional probability $P(b_i|a)$ creates a partition of occurrences of the possible translations b_i on the set of occurrences of the SL word form a. In this case translation pairs are retrieved that do actually occur in the parallel corpus, that is, where the TL expression actually appears in context. Thus, conceiving of translation relation as conditional probability, turned out to be suitable to create high quality encoding dictionaries.

1.3.2.4 Coverage

Although automatic estimation of conditional probabilities on the basis of parallel corpora provides answers to the essential questions, one serious difficulty is raised by the scarce availability of parallel texts, which has a serious effect on the size of the resulting proto-dictionaries. Note that this problem emerges principally in the case of less-resourced language pairs, which play a central part in our research. Proto-dictionaries are the results of filtering based on three parameters: SL and TL lemma frequencies and the conditional probabilities.

(IX) We found that a cascaded filtering technique significantly increases the coverage of the resulting proto-dictionaries: In the case of more frequent lemmata even lower values of conditional probabilities may yield correct translations. Hence, fine-tuning the parameters results in bigger proto-dictionaries.
1. INTRODUCTION

1.3.3 Practical results

The main practical finding of this thesis is that a suitable dictionary query system (DQS) is capable of rendering proto-dictionaries a useful resource for not only lexicographers but for end-users, too. Therefore, a DQS was designed and implemented that displays some novel features compared to traditional dictionaries. The practical results of the present thesis concern the novelties of the dictionary query system.

(X) The most important novelty of DQS is that it is customizable. That is, the users can select the sub-part of the proto-dictionary that suits most their needs. We think that various parameter settings match well different user needs. The scope of various users may span from novice language learners to professional translators. On the one end of the scale, keeping the most frequently occurring translation pairs results in low-coverage but high-precision proto-dictionaries, which are appropriate for novice language learners. On the other end of the scale, selecting more relaxed parameters generates a proto-dictionary with a greater coverage but with a lower precision. Such a proto-dictionary may suit the needs of professional translators who may be interested in special uses of words. At the same time, they can easily catch wrong translations, therefore, low precision does not pose a problem for them. Thus, the customizability feature of the Dictionary Query System supports various user scenarios.

(XI) Representing translation relation as conditional probability makes it possible to rank translations according to how likely they are. Presenting translation candidates in such a way is an obvious advance compared to the usual ordering techniques applied in bilingual dictionaries.

(XII) XXXXDQS: cross-lingual semantic relations (cross-lingual synonymy, hyperonymy, compositionality)
1.3.4 Economical results

From an economical perspective it is claimed that the proposed method facilitates the cost-effective generation of bilingual dictionaries for lesser-used languages.

(XIII) Owing to the data-driven nature of the proposed technique, the amount of human effort needed to compile bilingual dictionaries is significantly decreased.

(XIV) The extraction method and the DQS are language-independent, thus, only the language-dependent resources and tools need to be collected again when preparing dictionaries for new language-pairs.

(XV) Once the required resources and tools are collected, the generation of the reversed dictionary is a straightforward process.

1.4 Framework

EFNIL The scope of this thesis is the work that was accomplished in the framework of the project EFNILEX between 2008 and 2012. EFNILEX is a lexicographical project launched by the European Federation of National Institutions for Language (EFNIL). The mission of the organization is formulated on its website[1] as follows:

All the member states of the European Union have institutions whose role includes monitoring the official language or languages of their country, advising on language use, or developing language policy.

The European Federation of National Institutions for Language provides a forum for these institutions to exchange information about their work and to gather and publish information about language use and language policy within the European Union.

In addition, the Federation encourages the study of the official European languages and a coordinated approach towards mother-tongue and

1. INTRODUCTION

foreign-language learning, as a means of promoting linguistic and cultural diversity within the European Union.

EFNILEX The official website of the project is available at http://www.efnil.org/projects/efnilex

The European Union wishes to contribute to policies aimed at the preservation and strengthening of the multilingualism of Europe and the plurilingualism of its citizens. This goal implies that as many languages as possible should be:

(i) used in as many domains, functions and situations as possible;

(ii) involved in cross-border European and global communication and information exchange, e.g. through the internet;

(iii) learned and used by as many users as possible, both native and non-native speakers.

The above objectives imply that special attention had to be paid to lesser used language pairs, where—due to the low demand—dictionaries of appropriate size and quality are hardly available. The reason behind this is that the creation of such dictionaries does not pays off for publishers. The targeted size of the dictionaries is between 15,000 and 25,000 entries covering every-day language vocabulary.

Regarding the limitations of material background, our primary objective was to decrease the amount of lexicographic labour needed to compile a bilingual dictionary. Nevertheless, in the framework of the present research we had had no opportunity to collaborate with lexicographers in the long-run and test their real needs. Thus, we did not have an exact idea of how much time it would take to convert the automatically generated resources into full-fledged dictionaries. While this is an obvious shortcoming of the project so far, we tried to compensate for the deficiency and come up with bilingual resources that are not only useful for lexicographers but for end-users without any post-editing phase, too.

1http://www.efnil.org/projects/efnilex/description-of-efnilex
1.5 Structure of the Thesis

Chapter 2

Starting out from the hypothesis that a bilingual dictionary can be conceived of as a relation $\rho \subseteq A \times B$, in Section 2 we focus on the various approaches on the characterization of A, as the properties of A greatly influence the quality of the resulting dictionary. Three different methodologies are distinguished according to their relation to corpus data. First, traditional lexicography is considered, which is prevalently based on the linguistic intuition of lexicographers. Then, two corpus-oriented approaches are discussed: Corpus-based and corpus-driven lexicography, yielding the conclusion that high-quality monolingual sense-inventories are based on corpus data. The related theoretical considerations are discussed, as well.

Chapter 3

Beside translation, linking, an alternative dictionary building method is introduced in Chapter 3. The properties of ρ translation relation are investigated both in the case of translation and in the case of linking. It was found that albeit the notion of translation relation is inhomogeneous, it tends to be asymmetric in some sense and gradual. Nevertheless, in the case of linking, translation relation is expected to be symmetric, lexicographically speaking, which means that it should be an invertible function. Hub-and-spoke model, which is also covered in this chapter, raises the same expectation toward translation relation. By the end of Chapter 3 our expectations toward an automatically attained translation relation will be formulated and the possible approaches to compiling a bilingual dictionary are characterized. This is basically a summary of Chapters 2 and 3.

Chapter 4

In Chapter 4 the additional requirements are investigated that an encoding dictionary impose on vocabularies A and B and ρ translation relation. It is argued that high-quality encoding dictionaries are either based on neatly characterized SL sense-inventories, or we may disregard word senses and try to retrieve translations by creating a partition of TL word forms directly over a given SL word form. In Chapter 4 it will be also shown that the notion of conditional probability estimated on the basis of parallel corpus corresponds to the second approach.
Chapter 5 Once the main direction was selected, the special techniques should have been given a closer look so that the most appropriate methods could be selected for our purposes. Accordingly, Chapter 5 focuses on various sentence and word alignment techniques and discusses their pros and cons. As a result, we have decided to use Hunalign (Varga et al. (94)) to align sentences, and GIZA++ (Och & Ney (71)) to extract translation pairs from the sentence aligned parallel corpora.

Chapter 6 In the next step the selected alignment techniques were applied to create Lithuanian-Hungarian (and vv.) and Slovenian-Hungarian (and vv.) proto-dictionaries. These are proof-of-concept experiments aiming to confirm the viability of the proposed approach and to explore the related difficulties. One of the main difficulties, which should be addressed, is that the word alignment algorithm does not handle MWEs in itself. Both parallel corpora were converted into XML-format with uniform morphosyntactic annotation so that MWE extraction and alignment could be handled alike in the case of all language pairs.

Chapter 7 Chapter 7 explores to what extent the suggested method is able to handle MWEs through the alignment of verbal structures. Verbal structures are extracted using an algorithm described in Sass (85), then the extracted verbal structures were merged in both sides of the parallel corpora. The alignment algorithm treated the MWEs as if they were one-token expressions in the rest of the workflow.

Chapter 8 Finally, a dictionary query system was designed and implemented that is able to compensate for the drawbacks of the selected method and to extend its advantages even further. Although no user case study has been performed, according to our expectations a proper query system is able to render the automatically generated resources useful for not only lexicographers but for end-users, too. The automatically generated online dictionaries are available at http://efnilex.efnil.org.

Chapter 9 Chapter 9 summarizes the results and determines the future research directions.
Compiling the Headword List

2

2.1 Introduction

In the previous chapter the dictionary was defined as a relation $\rho \subseteq A \times B$, where A and B was defined as the SL and TL vocabulary, respectively. The present chapter focuses on the main characteristics of the SL vocabulary A in various lexicographic projects.

The dictionary building process ordinarily begins with the construction or selection of the SL vocabulary A. As the quality of the monolingual SL word lists greatly influence the quality of the resulting dictionaries (cf. Atkins & Rundell (7)), the editing principles behind the SL word lists and the related methodological issues will be given a closer look here.
2. COMPILING THE HEADWORD LIST

In Section 2.2 the traditional dictionary building process will be presented. In Section 2.3 the main building principles of the SL database will be clarified. Their relation to natural language data serves as the basis for classification. *Traditional*, *corpus-based* and *corpus-driven* approaches will be distinguished.

2.2 The Dictionary Building Process

2.2.1 The task

Form-meaning pairs The task of writing a bilingual dictionary might be conceived of as assigning the relevant language units of the TL to the relevant language units of the SL. As for the nature of these language units, they ideally can be characterized as form-meaning pairs. It is rather easy to realize that it is impossible to translate word forms without meaning, that is, meaning is inherently present during the translation process. Hence, the atomic linguistic units in a dictionary should be form-meaning pairs.

Lexical units (LUs) Form-meaning pairs are referred to as lexical units henceforward. As Atkins & Rundell (17) assert:

> A headword in one of its senses is a lexical unit (or LU) [...]. LUs are the core building blocks of dictionary entries. (p.162-163)

Thus, the dictionary building process includes:

(1) **Including SL LUs into the dictionary** Comprising not only bare word forms, the SL word list has to be characterized so that the corresponding meanings be attached to the relevant word forms. According to the extent to which natural language data is relied on during the characterization process one can distinguish three different paradigms in lexicography viz., traditional, corpus-based and corpus-driven approaches.

(2) **Finding the most appropriate TL LU(s) for every SL LU** More frequently TL LUs are the results of translation of SL LUs, but occasionally
2.2 The Dictionary Building Process

TL LUs are characterized independently from SL LUs. In this case the task of translation can be conceived of as to find the most appropriate pairings between SL and TL LUs. This latter process is referred to as *linking*.

In fact, these two basic steps constitute two slightly interrelated dimensions of dictionary building (cf. Figure 3.7). (1) will be elaborated more in Section 2.3, while (2) will be discussed in Chapter 3 in more detail.

The best translation Either created by means of translation or by means of linking, dictionaries should comprise the best TL LUs for an SL LU. However, this task is not at all straightforward. As Atkins & Rundell (7) notes:

> The perfect translation – where an SL word exactly matches a TL word – is rare in general language, except for the names of objects in the real world (natural kind terms, artefacts, places, etc.) (p. 467).

Since perfect translations are restricted to certain semantic domains, the best translations should be included into the dictionaries. This in turn raises the question of how the best translation can be defined and retrieved. This topic will be elaborated more in Section 3.

Encoding dictionaries Encoding or active dictionaries are dictionaries that provide speakers of the SL with information on how to express themselves in a foreign language. In this case not only the best translation has to be found but relevant contextual information has to be also provided to give hints on how a TL expression should be used correctly. Thus, in the case of encoding dictionaries a further phase must be added to the dictionary building process:

(3) Providing relevant contextual TL information to help the SL speaker to find the best TL expression for the given situation.

Decoding dictionaries As opposed to encoding dictionaries, decoding dictionaries help the speakers of the TL to understand a foreign language (SL). According to Melčuk (65) (p. 232-233) encoding dictionaries are also suitable for decoding, as encoding requires much more linguistic annotation than decoding.
2. COMPILING THE HEADWORD LIST

The underlying reason is that context might offer useful information when understanding, while text production requires exact knowledge on the appropriate expression conveying the right meaning and fitting the context at the same time.

2.2.2 The building process

According to Atkins & Rundell (7) the process of building a bilingual dictionary is threefold:

Analysis stage A relevant headword list of the source language has to be compiled. An inherent part of this stage is making decisions on which alternative senses are to be included in the SL side of the dictionary. The exploitation of existing monolingual dictionaries, wordnets or monolingual corpora might facilitate the compilation of such a headword list. When starting out from monolingual corpora the production of a headword list is referred to as the `analysis stage`.

However, throughout this thesis we use this term in a wider sense: It always denotes the stage of compiling the SL headword list no matter which resource is relied on.

Transfer stage During this stage the linguistic units making up the headword list are translated into the TL. However, it is important to keep in mind, especially during the creation of an encoding dictionary, that the translated LUs will be used in discourse. Thus, the safest translation has to be obtained, and possibly ranked at the first place in the relevant entry.

Synthesis stage In the `synthesis stage` of the dictionary building process the final entry will be produced through transforming the translated database records into a series of finished entries for a specific bilingual dictionary.

Figure 2.1 illustrates the workflow of dictionary building, where the SL LUs are characterized on the basis of corpus texts. Alternatively, instead of corpora other initial sense inventories might be relied on, too.
2.3 Sense Inventories and Language Data

Figure 2.1: The workflow of dictionary building - At the first stage the source language LUs are characterised – analysis stage. In the next phase these LUs are translated – translations stage. Finally, the translated LUs (TRs) are compiled so that they could be included in a dictionary – synthesis stage.

Less resourced languages and the analysis stage Especially in the case of lesser used languages—where the resources are rather limited—starting out from a source language explanatory dictionary seems to be a reasonable choice. For instance, the Lithuanian-Hungarian Dictionary (Bojtár (11)) relied on the Lithuanian Explanatory Dictionary (Keinys et al. (48)) as the source language headword list. As the initial monolingual database determines both the SL and the TL vocabulary of the bilingual dictionary, therefore, it is essential to be aware of the main properties of the initial source language database.

In what follows, an overview of such monolingual databases is given, classifying them on the basis of their relation to corpus data.

2.3 Sense Inventories and Language Data

As Jezek & Hanks (45) claim:

[Monolingual explanatory] Dictionaries describe the vocabulary of a language. For any given word, a good dictionary tells its readers the ways
in which that word typically contributes to the meaning of an utterance, the ways in which it combines with other words, the types of text that it tends to occur in, and so on. Clearly it is desirable that this account is reliable. A reliable dictionary is one whose generalizations about word behaviour approximate closely to the ways in which people normally use (and understand) language. (p. 587)

Taking this citation as our starting point in Subsection 2.3 we seek answers to the following questions:

(1) How reliability is guaranteed by each of these approaches?
(2) How a word is supposed to contribute to the meaning of a sentence?
(3) To what extent do they describe the possible combination patterns with other words?

As we will see soon, each lexicographical methodology has its own—sometimes unarticulated—presumptions about the questions above.

2.3.1 Traditional lexicography

For the sake of reliability lexicographers have to rely on some sort of linguistic evidence when compiling a dictionary. In the case of traditional dictionaries they tend to make use of their own mental lexicon, that is, of their linguistic intuition. However, one major problem with such an approach is that it might easily lead to an unbalanced description of the relevant linguistic phenomena, as in this case only lexicographers’ idiolects are listed in the dictionaries. Unfortunately, this bias might emerge not only when constructing the headword list, but also when characterizing the meanings belonging to the headwords.

According to Atkins & Rundell (7):

Dictionaries generally divide polysemous words into numbered senses. A conventional dictionary entry consists of a list of ‘neatly separated, consecutively numbered lexical meanings’ (Geeraerts 36, p.198). [...] This convention rests on two (unarticulated) assumptions:
1. There is a sort of Platonic inventory of senses 'out there' (so if the dictionary says word W has N senses, it can’t possibly have N – 1 or N + 2 senses)

2. Each sense is mutually exclusive and has clear boundaries (so if a specific occurrence of a word is assigned to sense A, it cannot also belong to sense B. (p. 271-272)

If the assumptions above were right, i.e. if meanings would be completely intersubjectively non-overlapping entities with clear-cut boundaries, the agreement among native speakers should be high when asked to select the right meaning for a word in context. Nevertheless, more experiments will demonstrate in Chapter 4 that the above assumptions pose real problems for human annotators.

In addition, in traditional lexicons contextual information usually do not play a great role entailing the fact that apart from proverbs and some collocations, possible combination patterns with other words are only poorly characterized, usually by providing only the part-of-speech category of the relevant word.

Because monolingual explanatory dictionaries serve as a basis for several bilingual dictionaries, especially in the case of lesser used languages, in Subsection 2.3.1.1 we focus on sense inventories of this type.

2.3.1.1 Monolingual explanatory dictionaries

The established practice of lexicography in the pre-corpus era was citation collecting which yielded the consequence that rare words and uncommon senses were over-represented in the dictionaries.

1For the present thesis we presume that there is a subjective—intersubjective scale from an epistemological perspective. In this framework, 'objective' means the same as 'intersubjective', except for the fact that the former implies an ontological standpoint, as well. Accordingly, the term 'objective' presupposes a common ontological basis, which is considered to be independent from the observer.

2Cf. Hanks (37) "During the past 150 years or so, the Oxford Reading Programme has been devoted to reading texts and collecting citations for the words used in them. During its heyday in the late 19th and early 20th century it involved many volunteer readers." (p. 586)
2. COMPILING THE HEADWORD LIST

As Hanks (37) puts it:

Citation readers collect citations for unusual words like triskaidekaphobia ‘irrational fear of the number 13’ and for unusual senses. Computers, on the other hand, do not exercise judgement. (p. 586)

Such a methodology is suitable for dictionaries that aim at providing users with explanations on uncommon words. And indeed, a native speaker typically looks up less common words or senses. True for monolingual dictionary use but not for bilingual dictionaries! This fact is hard to reconcile with the ordinary usage of bilingual dictionaries where the more common words and senses are looked up.

2.3.1.2 Wordnets

In our days the most influential monolingual semantic databases are wordnets. The first wordnet, the Princeton WordNet (PWN) was the result of the WordNet Project beginning in 1986 (Fellbaum (26)). Since then, PWN continues to serve as the basis of wordnets for other languages (Vossen (98)). Princeton WordNet is a manually constructed vast database, which was build to reflect the mental lexicon in a systematic way.

The particular need for such a resource emerged from both theoretical and practical considerations. From a theoretical perspective, the role of the lexicon grew bigger and bigger in the description of natural language: Instead of being merely a dustbin of linguistically uninteresting idiosyncrasies, it began to be thought of as an inherently organized repository of lexemes. At the same time, various NLP applications, such as information extraction or machine translation required a neatly organized lexicon of appropriate size, too.

Linguistic hierarchy Accordingly, there are two interrelated striking differences between wordnets and traditional monolingual explanatory dictionaries. First, as opposed to explanatory dictionaries, WordNet is inherently an electronic database. Secondly, the elements of the database are assigned an inner structure. According to Vossen (98):
2.3 Sense Inventories and Language Data

The wordnets are seen as linguistic ontologies rather than ontologies for making inferences only. They are ‘wordnets’ in the true sense of the word and therefore capture valuable information about conceptualisations that are lexicalised in a language: what is the available fund of words and expressions in a language, and what words and expressions can substitute each other.

Synsets The basic elements of the hierarchy are synonymy sets (synsets). Synsets are consisting of words which have the same meanings at least in certain contexts. Beside words, wordnets also might include multi-word expressions, such as phrasal verbs or collocations. Thus, more word forms may belong to the same synset (synonymy), while the same word form may belong to more synsets (polysemy). Relevant example sentences are also provided. Synonyms to be included in PWN were found on the basis of traditional dictionaries of synonymy, such as Roget’s International Thesaurus (Chapman), A Basic Dictionary of Synonyms and Antonyms (Urdang) and Urdang’s revision of The Synonym Finder (LaRoche & Urdang).

Besides, corpus data was also considered, but merely as resource of information on lemma frequency counts. Figure 2.2 depicts a synset from Princeton WordNet 3.0.

![introduce, present, acquaint (ID) (Definition: cause to come to know personally)]("permit me to acquaint you with my son"; "introduce the new neighbors to the community"

Figure 2.2: A synset of Princeton WordNet 3.0

Relations The most important relations between PWN synsets are the following:

Hyperonymy The generic term used to designate a whole class of specific instances. Y is a hypernym of X if X is a (kind of) Y.

1The Brown corpus (Francis & Kučera) was relied on.
2. COMPILING THE HEADWORD LIST

Hyponymy The specific term used to designate a member of a class. X is a hyponym of Y if X is a (kind of) Y.

Meronymy The name of a constituent part of, the substance of, or a member of something. X is a meronym of Y if X is a part of Y.

Troponymy A verb expressing a specific manner elaboration of another verb. X is a troponym of Y if to X is to Y in some manner.

Entailment A verb X entails Y if X cannot be done unless Y is, or has been, done.

The WordNet is divided into four separate subparts according to part-of-speeches: Nominal, verbal, adjetival and adverbial semantic nets were built separately.

Objection According to Hanks & Pustejovsky (38) many of WordNet’s senses are indistinguishable from one another by any criterion—syntactic, syntagmatic, or semantic—other than the fact that they happen to have been placed in different synsets. They underpin this statement with the synset write claiming that the 10 different senses belonging to different synsets do not represent separate meanings in the reality, rather they are different facets of the same sense. Their objection corresponds to the result of our experiment described in 4.2.2.4.

2.3.1.3 Concluding remarks

The Frege Principle In traditional lexicography words and their meanings are the basic building blocks of language. Sentences are derived from these meaningful units in a compositional, thus, predictable way. Thus, traditional lexicography along with several contemporary linguistic theories (generative grammars, formal semantics) – builds strongly upon the Frege principle (cf. Janssen (44), Szabó (88)), which asserts that the meaning of a complex expression is fully determined by its structure and the meaning of its constituents.

Productivity In traditional lexicography part-of-speech categories tend to be considered as ultimate generalizations on word usage. Therefore, the structure of
the sentences is supposed to be determined prevalently by part-of-speech information, thus, part-of-speech categories are mostly used to give hints to the user on how to combine words into sentences. In accordance with generative grammars, the grammatical rules operate on part-of-speech categories.

Meaning of LUs In this framework meanings are considered to be independent of the rules that determine how the LUs of a language may be combined. This view corresponds to the principle of the independence of syntax and semantics put forward in Syntactic Structures (Chomsky (19)):

> grammar is autonomous and independent of meaning, and that probabilistic models give no particular insight into some of the basic problems of syntactic structure (p. 17).

From a theoretical perspective Chomsky’s principle may be interpreted as the declaration of the insignificance of lexicon in the description of grammar: The main objective of grammar is to invent or describe rules that operate on the elements of the lexicon.

Note, that the other end of the scale is Harris’ distributional hypothesis (Harris (39)), which states that words that are used and occur in the same contexts tend to purport similar meanings. This means that the meaning of the words do influence where they may appear within a sentence, that is, the arguments of syntactic rules are more restricted: Instead of part-of-speeches they are determined by certain semantic classes. As we will see in Section 2.3.2 and 2.3.3 the distributional hypothesis plays an important role in corpus-based and corpus-driven approaches and entails a more restricted notion of productivity.

Presuppositions From this it follows that traditional lexicography presumes the following:

(1) The basic blocks of language are word form–meaning pairs. Which means, that

 (i) Word forms do have meanings
2. COMPILING THE HEADWORD LIST

(ii) These meanings are fairly stable across different contexts

(2) Word–meaning pairs are stored in the lexicon and can be assessed by means of introspection.

From (1) it follows that contextual information does not play a great role in traditional lexicography. While (2) has two questionable implications:

(i) Everyone has a strong belief that they know exactly the meanings of the word.

(ii) This knowledge is largely alike across the members of a language community. That is, meanings are objective or at least highly intersubjective entities.

In Chapter 4 the latter two assertions will be investigated and it will be proven that both are false.

Philosophical notes Accordingly, traditional lexicography takes its root from the philosophical tradition rationalism. Rationalism goes back to Plato, who claimed that ideas are objective entities 'out there'. This and the stipulated notion of the main idea (the idea of 'truth' or 'good') guarantees that ideas appear largely alike for each human being. Ideas turn out to be innate entities in Descartes' philosophy. In his epistemological system intersubjective equivalency of ideas across human beings is guaranteed by God: The existence of a loving God ensures that our clear and distinct ideas correspond to the reality, therefore, the clear and distinct ideas are the same for everyone. The same thread of thought re-emerges in the theories of Chomsky, since in this case the innate conceptual structure is determined by some human-specific biological necessities.

Interestingly enough, although corpus linguists claim to be empirisits, whose methodology is grounded in linguistic data, as we will shortly see, corpus-based bilingual lexicography might retain elements of rationalism, namely when determining translational equivalency.

According to Adamska-Salaciak (1):
The only exception is cognitive equivalence, whose identification by skilled bilinguals is characterised by a high degree of intersubjective agreement, which may culminate in its objectification.

2.3.2 Corpus-based lexicography

Preliminaries Even if lexicographers exhibit profound expertise in their field, the reliance on merely human intuition might easily lead to an unbalanced description of the relevant linguistic phenomena, as in this case only lexicographers’ idiolects are listed in the dictionaries. With the appearance of electronically available corpora an alternative approach emerged offering great amount of language data to support lexicographers’ work.

The role of context Moreover, in accordance with Harris’ distributional hypothesis (cf. page 25), through providing an essential source of distributional information, they can contribute to the characterization of prevalent word senses. This naturally entails a different view on meanings: Instead of being pre-existent Platonic entities, meanings are grasped through usage, relying on the contexts in which a word may occur. Thus, context and usage plays a much more important role in corpus-based lexicography, than before it.

As Hanks (37) notes:

> Words have meanings—or rather, strictly speaking, they have the potential to make meanings when put into context—and they are associated with particular sets of syntagmatic patterns, which can be discovered through painstaking corpus analysis. (p. 581)

In the present section some widely known corpus-based lexicographic projects are described.

2.3.2.1 COBUILD

In 1983 John Sinclair and his colleagues started working on the first edition of the COBUILD dictionary. They discovered that many of the generalizations made in
2. COMPILING THE HEADWORD LIST

pre-corpus dictionaries, though plausible, were not quite right. The corpus they used is the continuously growing Bank of English (650 million words nowadays, part of the Collins corpus (2.5 billion words). As the project’s home page indicates:

When the first Collins cobuild Dictionary of English was published in 1987, it revolutionized dictionaries for learners, completely changed approaches to dictionary-writing, and led to a new generation of corpus-driven dictionaries and reference materials for English language learners.

Frequency information, for example, allowed them to rank senses by importance and usefulness to the learner (the most common meaning should be put first); and the corpus highlights collocates, information which had only been sketchily covered in previous dictionaries. Under Sinclair’s guidance, his team also developed a full-sentence defining style, which not only gave the user the sense of a word, but showed that word in grammatical context.

According to Carter the innovations of the first COBUILD Dictionary include:

(1) Citations are examples of real English and do not involve made-up examples.

(2) Linguistic and stylistic differences between written and spoken usage, and British-English and American-English are stored separately.

(3) Relative frequencies of occurrences are indicated,

(4) Senses of polysemious words are ordered based on their frequencies in the corpus.

(5) Information on the main colligational and collocational properties of a word is also provided.

2.3.2.2 Explanatory combinatorial dictionaries (ECD)

ECD was proposed in the late 1960s by Žolkovskij and Melčuk. It also includes many of Apresjan’s ideas. Only a few ECDs are currently available in print. See Melčuk & Zolkovskij (64) for Russian and Melčuk et al. (63), Melčuk et al. (66), Melčuk et al. (67), Melčuk et al. (67) and Polguère (76) for French. A dictionary of Spanish collocations—Diccionario de colocaciones del español—has been also developed (Ramos (78)). Melčuk (65) characterizes ECDs as follows:

In a nutshell, the ECD is an active phrasal dictionary, based on the semantics of the LUs treated and stressing their restricted cooccurrence; its unit of description is a Lexical Unit, that is, roughly, a word or a set phrase taken in a particular sense (rather than a polysemous word, as in all current dictionaries). (p. 242.)

The ECD is based on the Meaning-Text Theory (MTT), where the ECD constitutes an integral part of the semantic module.

As opposed to generative grammars, in MTT the lexicon is claimed to be superior to the grammar itself in the course of linguistic description. According to Melčuk (65):

Most current linguistic theories view a linguistic description of a language as a grammar; a lexicon is taken to be an indispensable, but somehow less interesting annex to this grammar, where all the idiosyncrasies and irregularities that cannot be successfully covered by the grammar are stored. By contrast, MTT considers the lexicon as the central, pivotal component of a linguistic description; the grammar is no more than a set of generalization over the lexicon, secondary to it. (p. 228.)

Accordingly, ECDs are conceived of as theoretical rather than practical or conventional dictionaries: An ECD purports to store all the lexical knowledge shared by speakers of a given language within a clearly stated theoretical linguistic framework. As opposed to it, conventional dictionaries are normally not consistent with
2. COMPILING THE HEADWORD LIST

a particular linguistic theory (cf. the significance of FrameNet for corpus-based lexicography on page 33).

An ECD is a formalized dictionary—a lexical database—which lays great emphasis on *explicitness* and *consistency*:

Explicitness

The ECD’s explicitness means that nothing should be left to the user’s intuition or logical abilities; nothing should be communicated through analogy or examples; everything has to be stated in an overt and precise way. To achieve this, the lexicographer is obliged to use a pre-established and well-developed lexicographic metalanguage. (Melčuk 65 p. 229)

Consistency

The goal of consistency in the ECD has two implications: first, similar LUs should be described in a similar way, so that the degree of semantic relatedness of two LUs is paralleled by the degree of the similarity of their entries; and second, different aspects of one LU, i.e. its semantic, syntactic, and lexical cooccurrence properties, should be described in conformity with each other. (Melčuk 65 p. 230)

ECDs has five linguistic, distinctive features:

Encoding dictionaries ECDs are encoding or active dictionaries, providing users with ample linguistic data on the usage of expressions in various contexts and situations. The theoretical basis of this standpoint is that according to Melčuk 65 the speaking process is more linguistic than the understanding process, since it requires less extralinguistic knowledge and common sense, which has to be carefully separated from the linguistic competence in the course of dictionary compilation. A strong correlate of this perspective is that collocations and idioms form an important part of the dictionaries.
2.3 Sense Inventories and Language Data

Semantic basis The ECD’s semantic orientation is based on the theoretical conviction that natural language is primarily a tool for expressing meanings, so that semantic considerations underlie everything else in language.

Co-occurrence as the main target As encoding dictionaries should focus both on meanings and possible contexts, in ECDs all collocations of an LU are included in the entry of that LU. Thus, ECDs have to pay close attention to the restricted combinability of LUs.

The ECDs describe all LUs of a language together and in a similar way Unlike the common practice in lexicography, where idioms are subsumed under lexeme LUs, ECDs treat idioms as separate headwords. This editing principle is a consequence of the observation that the meaning of idioms is unpredictable, thus they are LUs on their own right.

Each entry of the ECD describes one LU In the ECD, each LU has its own lexical entry, and each lexical entry corresponds to one LU. All relevant lexicographic information is, strictly speaking, attached to an individual LU. It ensures the internal coherence of lexical entries.

2.3.2.3 Levin verb classes

Preliminaries Although Levin’s work is not based on corpus data—instead, it considers data present in the linguistic scientific literature—moreover, it concentrates merely on verbs, we have decided to discuss it here. The main reason behind this is that Levin’s approach moves from intuitive lexical semantics toward a more corpus-based methodology. In accordance with Levin (55), traditional argument realization theories (eg. Komlósy (52)) also assume that verbal meaning accounts for the syntactic realization of its arguments in the verbal complement structure—i.e. arguments are realized as subjects, objects or obliques. These theories also presume that verbal arguments can be described with a predefined, universal and finite set of semantic roles. That is, more traditional argument realization theories have rather similar assumptions about meaning to that of

1Collocations are presented only in the entry of their bases.
2. COMPILING THE HEADWORD LIST

traditional lexicography. Namely, verbal meanings are intersubjective Platonic entities ‘out there’. The main contribution of Levin—along with the lines of corpus-based methodology—is that she starts out from observable surface syntactic behavior instead of verbal meaning.

Levin verb classes Levin (55) takes the hypothesis that verbal meaning determines its syntactic behavior as her starting point. Based on this assumption she classified over 3,000 English verbs according to their alternation behavior. The main contribution to argument realization theories (along with Pustejovsky (77)) is that it refuses to rely on predefined semantic elements when representing verbal meaning. Instead, Levin seeks verbal *meaning components*—*meta-predicates*—that account for verbal behavior based on surface distributional data. The theory presumes that verbs participating in the same syntactic alternations share some common meta-predicates, too. The meta-predicates can be thought of as meaning components that at least partially describe the meaning of the given verb. Meta-predicates are then responsible for the syntactic behavior of the given verb class. Therefore, the inventory of meta-predicates can be explored in a given language by the investigation of the complement structure alternations of the verbs. Hence, it follows that this theory does not rely on a predefined finite set of meta-predicates, rather it justifies the existence of a given meta-predicate through observable syntactic behavior, therefore, verbal meaning is grasped through intersubjective language data.

However, though Levin (55) methodology seems to be rather sound, Hanks & Pustejovsky (38) raised some objections against it:

Objections Hanks & Pustejovsky (38) formulated the following objections toward Levin’s verb classes: First, they claim that the classification of English verbs is based on Levin’s intuition supported by the intuitions of other academics who have written about the same verbs. Instead of intuition, the classification should be based on corpus data, since word behavior is observable, thus, it is able to guarantee at least some level of intersubjectivity.

As they assert:
Many of Levin’s assertions about the behaviour (and sometimes also the meaning) of particular verbs in her verb classes are idiosyncratic or simply wrong. Our findings accord with those of Baker & Ruppenhofer (10), that when compared with actual usage, Levin’s comments about diathesis alternations for verb classes apply to some but not all members of the classes. This is a pervasive problem in the second half of the book.

The second problem concerns coverage. Although Levin discusses approximately 3000 English verbs, her classification does not comprise all of the major verbs (e.g. specialize, specify, spell, spend, spoil).

A further issue according to Hanks & Pustejovsky (38) is that the major senses of the verbs are not necessarily included.

2.3.2.4 FrameNet

Preliminaries According to Atkins & Rundell (7), although corpus-based lexicography is held to be more objective then the traditional intuition-based approaches, the problem of intersubjectivity arises again, when looking at the wealth of concordances a corpus might offer. In the absence of a clearly defined and coherent guide it is rather difficult to write entries that comprise all the relevant linguistic facts of an LU in a consistent way. Obviously, such a guide has to rest on a sound and detailed linguistic theory that is able to provide us with a full-fledged description of language and has to be explicit on how to select the lexicographically relevant linguistic facts. According to them:

> For many excellent lexicographers this underlying theory is never made explicit: their intuition tells them what’s worth saying about the headword, once they’ve scrutinized the corpus evidence.s (p. 150)

FrameNet Because of its underlying linguistic theory, Frame Semantics (Fillmore (29)), FrameNet is claimed to be of considerable importance to professional lexicographers. In what follows we give a short overview of FrameNet from a lexicographic point of view based on Atkins & Rundell (7).
Fillmore (28) claims that:

The proper way to describe a word is to identify the grammatical constructions in which it participates and to characterize all of the obligatory and optional types of companions (complements, modifiers, adjuncts, etc.) which the word can have in such constructions, in so far as the occurrence of such accompanying elements is dependent in some way on the meaning of the word being described.

In accordance with this, Frame Semantics describes words, their various meanings, and how these are combined with others to form the utterances and sentences of a language. Its aim is to analyse and record, for each sense of a word or phrase, the full range of its semantic and syntactic relations. To do this, they have devised a suite of codes denoting semantic roles (‘frame elements’) and grammatical relationships, which allow them to document in detail the corpus contexts in which a word is found.

Frames and frame elements A semantic frame is a schematic representation of a situation type (e.g. speaking, eating, etc.) together with a list of the typical participants, props, and concepts that are to be found in such a situation. These are the semantic roles, or *frame elements*. Frame semantics describes the meanings of words and phrases (lexical units) in terms of the frame to which they belong and the contexts in which these LUs are found. The context, in a frame semantics analysis, is normally the phrase or clause, and maximally the sentence, in which the target word appears in corpus data. Frame Semantics starts out from the hypotheses that successful communication presumes shared interpretations of what is said or written. These interpretations are principally common semantic frames that are evoked in our minds by the words and phrases we use.

Example Someone says: "Jo asked her brother to help her". In our own personal experience the situation in which someone makes a request normally contains certain elements. The vocabulary and syntax of its context let us identify the LU *ask* in that sentence as belonging to the REQUEST frame. Now, based on this frame, we expect to find in the sentence an LU referring to someone who is doing the requesting (*Jo*) another LU denoting someone who is being
asked (her brother), and a phrase describing what that person is asked to do (to help her). Our knowledge of English leads us to interpret the subject of the verb as the ‘requester’, its object as the person being asked, and its infinitival complement as the requested action. These elements of the REQUEST frame are used to describe the behaviour of the other words in that frame, too: For instance, verbs such as order, appeal, command, suggest, beg, and nouns such as order, appeal, command, suggestion, and of course request itself.

Valency description First, the frame is defined, and the frame elements are named and described. Essential frame elements are parts of the complement structure of the verb. There are also ‘peripheral’ frame elements that are common to whole sets of frames (e.g. LOCATION or FREQUENCY). Since peripheral frame elements are expressed in a way describable by productive rules, thus are not inherent parts of the valency description, these are not of primary importance here.

In the next step the set of words are identified that may evoke the given frame. Then, for each LU a list of corpus sentences is extracted. Finally, each frame element in each corpus sentence is annotated with their phrase boundaries, with their phrase types (e.g. noun phrase, adjectival phrase, etc.) and with their syntactic function. Syntactic functions assigned by verbs are External Argument \(^1\), Object and Dependent. Other part-of-speech categories assign syntactic functions, as well.

Hierarchy FrameNet is basically a hierarchy of interrelated frames. There are several types of inheritance, such us Inheritance, Subframe, Causative of, Inchoative of and Using. We do not discuss the exact nature of these relations here. However, it is worth noting that according to Ruppenhofer *et al.* (82) the main advantage of building a systematic FrameNet hierarchy is that it enables paraphrasing, both for humans and for computers.

In many ways, paraphrasing is at the core of what we intend FrameNet to facilitate. [...] Translation is paraphrasing with the limitation that

\(^1\) Among others, External Argument includes subjects or any other constituent that controls the subject of a target verb.
2. COMPILING THE HEADWORD LIST

all the resulting paraphrase must be in the target language. This requires FrameNet-style data for both source and target language; this currently limits such efforts to English, German, Japanese, and Spanish.

Lexicographic aspect As Atkins & Rundell (7) notes, there are several papers concerning the practical application of Frame Semantics to lexicography (e.g. Atkins (6), Fillmore & Atkins (30), Atkins et al. (8) and Atkins et al. (9)).

The underlying linguistic theory, Frame Semantics, ensures that the valency description include the most important facts that the lexicographer needs to be aware of when writing the dictionary entry. Moreover, it renders the corpus analysis more coherent and objective, which in turn can guarantee that no necessary linguistic fact is overlooked.

FrameNet vs. Levin verb classes According to Baker & Ruppenhofer (10) the FrameNet project (Fillmore & Baker (31)) is able to overcome some of the shortcomings of Levin’s classification. In FrameNet words (not only verbs but nouns and adjectives, too) are grouped together on the basis of their underlying conceptual structures and their distributions are derived from corpus evidence. This entails that

verbs grouped together in FrameNet (FN) might be semantically similar but have different (or no) alternations, and that verbs which share the same alternation might be represented in two different semantic frames.

That is,

The FrameNet project is producing a lexicon with roughly comparable coverage of verbs, but with much more detail concerning the semantics and syntax of their arguments, more semantically consistent categories, and a richer set of relations among them.

Beside its merits, the corpus-based methodology of FrameNet has to face some difficulties, too. Hanks & Pustejovsky (38) raised the following objections:
2.3 Sense Inventories and Language Data

Objections: Although it exploits corpus data, FrameNet runs the risk of accidental omissions, as it relies on the intuitions of researchers. In accordance with this, some frames overlap to the point of being indistinguishable, while others are only partially populated. In some cases only minor or rare senses are included.

Besides, the workflow proceeds frame-by-frame and not word-by-word which entails that no word can be considered complete until all frames are finished.

2.3.2.5 Corpus Pattern Analysis

Corpus Pattern Analysis is an approach developed by Hanks (cf. Hanks & Pustejovsky [38]) with the objective of producing a verbal database comprising verbs—The Pattern Dictionary of English Verbs[^PDEV](http://nlp.fi.muni.cz/projects/cpa)—without the methodological issues present in WordNet, FrameNet or in Levin’s verb classes. The underlying linguistic theory is the Theory of Norms and Exploitations (TNE) (Hanks & Pustejovsky [38]).

TNE As described in Cinkova & Hanks [20] TNE relates prototypical meaning concepts to prototypes of phraseology (i.e. linguistic usage), as found in a large corpus. Corpus analysis shows that there are not only prototypical uses of words (i.e. normal and conventional uses: *Norms*) but also perfectly well-formed and well-motivated utterances that, in one way or another, deviate from the prototypical patterns. These are mostly creative innovations, but they include also domain-specific patterns. These patterns are called *exploitations*. An exploitation is an utterance that can be related to a corresponding phraseological norm.

The project aims to anchor word’s meanings to their use based on corpus data. For that purpose the relationship between meanings and patterns of usage is explored. In fact, patterns are thought of as collocations that are characterized by *semantic types* and *lexical sets*.

Semantic type Semantic types are context independent cognitive concepts reflecting common sense knowledge, such as *Human, Institution, Animal,*...
2. COMPILING THE HEADWORD LIST

Event, etc. Therefore, semantic types are characterized regardless of the verb which is the head of the given structure. Context dependent semantic restrictions, i.e. those imposed by the verb, are described in terms of semantic roles. The semantic roles are mapped onto specific semantic types. Collocations that have a distinctive semantic feature in common are grouped together according to their semantic type.

Lexical set If there is no semantic type available, words are grouped together into lexical sets according to their syntagmatic behavior. In this case, the lexical set is specified extensionally, by simply enumerating typical members. Here, it remains an open question whether the relevant lexical items can be unified into a semantic type by means of common semantic features. Thus, the difference between lexical types and lexical sets is the way in which they are defined: Lexical types are defined intensionally, utilizing a salient common sense property, while lexical sets are rather defined by means of listing all the members of the corresponding set.

Verbal patterns in PDEV are characterized by relying both on lexical types and on lexical sets.

Shallow ontology An important by-product of CPA is a shallow ontology[1]. The significance of the ontology is that it is based on linguistic knowledge as opposed to conceptual knowledge (cf. WordNet). The semantic types are stated in a finite inventory, which constitutes a shallow ontology of about 200 items. Reflecting language data instead of scientific considerations, the CPA shallow ontology is intrinsically unbalanced.

Example Probably because of cultural reasons, there are many verbs (bark, saddle, etc.) that require dogs or horses as any of their collocates. Therefore, Dog and Horse are parts of the ontology, while there are no semantic types for other species of animals, such as jackals or hyenas.

CPA and FrameNet According to Hanks & Pustejovsky [38]:

2.3 Sense Inventories and Language Data

If CPA succeeds in its objective of analysing all the normal uses of each verb, it will complement FrameNet neatly in this respect. FrameNet offers a very full and detailed semantic analysis of each frame; CPA offers a contrastive analysis of the senses of each word. When a CPA entry for a given verb is finished, it has, by definition, completed analysis of all normal uses of that verb.

2.3.2.6 Referencie Bestand Nederlands

As described in the paper of van der Vliet (93), 'Reference Database of Dutch’ (RBN) is a Dutch lexical database designed primarily to support the construction of bilingual dictionaries. The monolingual database is reusable in the development of bilingual dictionaries—irrespectively of the fact whether Dutch is the source or the target language. RBN consists of a definition and additional properties for each of its 45,000 entries. The properties might be syntactical, morphological, graphemic, semantic (countability, semantic type, systematic polysemy, synonyms), pragmatic and combinatorical (distributional). During the construction of the database great emphasis was laid on the explicit and systematic specification of properties. The explicit and systematic description of meanings was ensured by the following:

1. They relied on a 38 million-word corpus when differentiating between meanings.

2. They aimed at listing only the basic meanings, other senses were derived from the base meanings, for instances by means of systematic polysemy.

3. Nouns were divided into 11 different semantic classes.

RBN was extensively used in the CLVV project described in Section 3.3.2.1 in more detail.
2. COMPILING THE HEADWORD LIST

2.3.2.7 Lexical profiling: Sketch Engine

Preliminaries Without lexical profiling, lexicographers make use of their own intuition when selecting the relevant linguistic facts to be included in a dictionary even if a wealth of empirical data is available. As Kilgarriff & Kosem (49) notes:

Most of the first COBUILD dictionary was produced from a corpus of eight million words. Several of the leading English dictionaries of the 1990s were produced using the British National Corpus (BNC), of 100 million words. Current lexicographic projects we are involved in use corpora of around a billion words—though this is still less than one hundredth of one percent of the English language text available on the Web.

Therefore, in this section we give an overview of one of the leading lexical profiling tools.

Lexical profiling As corpus-size grew bigger and bigger, scrutinizing concordance turned out to be a suboptimal approach when tailoring headwords in a dictionary. As opposed to exploiting concordances directly, lexical profiling tools render possible the efficient evaluation of large amount of linguistic data with a reasonable amount of effort. A lexical profile is a sort of statistical summary of a word which provides lexicographers with the salient facts about the way a word most typically combines with other words.

Sketch Engine Sketch Engine is a web-based program which takes as its input a corpus of any language with an appropriate level of linguistic annotation. It generates word sketches on the basis of input data, which serve then as starting point when analyzing complex headwords (cf. Atkins & Rundell (7)).

Language analysis functions Among many others, Sketch-Engine’s most important language-analysis functions are the following:

The Concordancer It displays all occurrences from the corpus for a given query. The program is very powerful with a wide variety of query types and many different ways of displaying and organising the results.
The **Word Sketch program** It is a lexical profiling tool, which provides a corpus-based summary of a word’s grammatical and collocational behaviour.

Word sketch A word sketch is a sort of lexical profile produced automatically by Sketch Engine. Word sketches are defined as follows: A word sketch is a one-page automatic, corpus-based summaries of a word’s grammatical and collocational behavior Kilgarriff et al. (50) (p. 105)

Moreover, some additional features are also included to facilitate the characterization of headwords (Kilgarriff & Kosem (49)):

Thesaurus The automatically generated thesaurus provides lexicographers with near-synonyms. Nearest neighbours are calculated for a node word on the basis of their shared collocates (for more details see Subsection 2.3.3.2).

Sketchdiffs Sketch differences compare word sketches for two words, showing the collocations that they have in common and those they do not. For example, comparing attractive and handsome sketchdiff yields the information that particularly, and extremely are more typical modifiers of attractive; strikingly and devastatingly are more typical of handsome, while truly or exceptionally show similar salience with both handsome and attractive.

Good dictionary examples (GDEX) Good dictionary examples are hard to find in corpora, since several different characteristics have to be taken into account. According to Kilgarriff & Kosem (49) readability and informativeness are important factors. Therefore, a GDEX is of ideal length, possibly comprises only alphabetical characters is made up of frequent words and contains words that are frequently found in the vicinity of the key expression (and, therefore, are probably collocates). Hence, in practice lexicographers tend to invent, rather than found GDEXs, even in the presence of abundant language data. Unfortunately, this runs the risk of failing

1 And in some cases antonyms.
2 Beside punctuation marks, of course
2. COMPILING THE HEADWORD LIST

to provide a natural context for the expression being illustrated. Sketch
Engine’s GDEX module attempts to automatically sort the sentences ac-
cording to how likely they are to be good dictionary examples. This module
relies on both readability heuristics (e.g. sentence length, word frequency,
etc.) and informativeness heuristics (e.g. including typical collocates).

2.3.2.8 Concluding remarks

The great number of relevant projects is in accordance with the observation of
Hanks (37):

At the core of lexicography, therefore, lies the corpus. (p. 597)

Accordingly, in our days it is widely accepted in the lexicographer community
that high-quality dictionaries are based on corpora. The main reason behind this
is that linguistic data decreases the role of human intuition during lexicographic
process.

Meaning of LUs In corpus-driven lexicography the meaning of words is char-
acterized on the basis of corpus data. This methodology is supported by the
famous observation attributed to Firth (32), who claimed:

You shall know a word by the company it keeps.

From a corpus-based perspective, words’ meanings can be grasped by relying
on Harris’ distributional hypothesis (Harris (39)), which asserts that words that
are used and occur in the same contexts tend to purport similar meanings. This
hypothesis is compatible with two somewhat different interpretations of meaning:

(1) Possible contexts greatly influence the possible meanings of a word. There-
fore, the basic building blocks of language are not words with their meanings,
as in the case of intuition-based dictionaries, but words with their meaning
potentials (cf. Hanks (37) on page 27).
2.3 Sense Inventories and Language Data

(2) Instead of meaning potentials words do have meanings, as in the case of intuition-based lexicography. But as opposed to the traditional approach, the meanings of the words greatly influence where they may appear within a sentence. This equals to say that the arguments of syntactic rules are more restricted than in the case of traditional lexicography: Instead of part-of-speech categories they are made up of narrower semantic classes.

Example To give an example for both of the interpretations, the Hungarian words *nagy* (great) and *komoly* (serious) have the same meaning in certain contexts. In other contexts *nagy* means the same as *szép* (nice). However, the synonymy holds only in certain contexts: *nagy, komoly* and *szép* in the phrase *nagy/komoly/szép fiú* (great/serious/nice boy) refer to different properties of the boy.

In the "meaning-potential" interpretation *szép* has a potential to mean both that something is greater-than-avarage and an aesthetic category. According to the alternative view, *szép* is a polysemious word that shows up with different meanings in different contexts.

Constrained productivity The second interpretation of meaning entails a view of constrained productivity: In this perspective, part-of-speech categories are not considered as the ultimate generalizations on word usage. It does not suffice any more to rely primarily on part-of-speech information when describing the grammar, presuming that every member of a part-of-speech category behaves more or less in the same way. Instead, a more subtle description of the behavior of words is needed, giving greater importance to the meaning component, since the semantic properties of words determine the ways in which they can be combined. Therefore, instead of part-of-speeches, grammatical rules operate on more restricted semantic word classes.

Increased role of lexicon A correlate of restricted productivity is a shift in theoretical work: As opposed to classical generative grammars, the corresponding theories (MTT, FrameNet, CPA, etc.) consider the lexicon the central element of

1 For instance, before the Hungarian noun *baj* (trouble).
2 For instance, before the Hungarian noun *siker* (success).
2. COMPILING THE HEADWORD LIST

grammatical description. As we saw earlier on page 29 this theoretical standpoint is explicitly formulated by Melčuk (65):

Most current linguistic theories view a linguistic description of a language as a grammar; a lexicon is taken to be an indispensable, but somehow less interesting annex to this grammar, where all the idiosyncrasies and irregularities that cannot be successfully covered by the grammar are stored. By contrast, MTT considers the lexicon as the central, pivotal component of a linguistic description; the grammar is no more than a set of generalization over the lexicon, secondary to it. (p. 228.)

Therefore, in a corpus-based framework, lexicography i.e. the exhaustive description of the lexicon, and linguistics may be thought of as closely related disciplines.

Presuppositions Consequently, corpus-based lexicography presumes the following:

(1) The meaning of words’ is highly dependent on the contexts in which they occur. This view on meanings is compatible with (at least) two interpretations:

(i) Word forms do not have meanings in themselves, but they have meaning potentials.

(ii) Words tend to be highly polysemious that show up with different meanings in different contexts.

(2) In either case, the various meanings can change significantly across different contexts.

(3) Because of the increased role of contexts in the description of meanings, introspection in itself is not enough to be able to list the relevant headwords of a dictionary and to provide a sufficient characterization of it. Therefore,

(i) The lexicographic intuition should be underpinned by corpus evidence.

(ii) Moreover, a sound linguistic theory is needed to draw lexicographers’ attention to the lexicographically relevant facts (cf. page 33).
2.3 Sense Inventories and Language Data

(iii) In addition, for the same purpose, the exploitation of lexical profiling tools turned out to be indispensable, too, as corpus size increased (cf. page 40).

Philosophical notes The philosophical background of corpus-based lexicography is empiricism. The simplest formulation of empiricism is that humans do not possess innate ideas. The metaphor of *tabula rasa* (blank sheet) of Locke (58) depicts this insight. Such an approach raises the question of how intersubjectivity of meanings can be guaranteed. In this perspective, intersubjectivity is guaranteed by usage. The members of a language community should use words with the same meaning to achieve the chief end of language, communication. According to Wittgenstein (101):

> Words and chess pieces are analogous; knowing how to use a word is like knowing how to move a chess piece. [...] The meaning of a word is to be defined by the rules for its use, not by the feeling that attaches to the words.

> "How is the word used?" and "What is the grammar of the word?" I shall take as being the same question.

As the set of contexts in which an expression may appear reflects the use of language, the view of Wittgenstein might be reconciled with what Firth (32) said.

Drawbacks One serious practical disadvantage of the corpus-based approach is that manufacturing a full-fledged sense-inventory is rather tedious requiring so much resource that is usually unavailable in the case of less resourced languages. However, as it was discussed earlier (cf. page 33), the wealth of language data may raise additional problems for lexicographers when compiling monolingual sense-inventories. Namely, lexicographers should be able to select the relevant linguistic facts and describe them in a consistent way, which becomes more and more difficult as the corpus size increases. We saw that lexical profiling tools and linguistic theories may help in selecting the relevant facets of language data and describe them in a consistent way.
2. COMPILING THE HEADWORD LIST

The next section discusses corpus-driven lexicography and some related research directions. As in our days the exploitation of corpus-driven methods is not the common practice in the field of lexicography, beside a few larger scale projects we present some insightful research ideas, as well. In our view, corpus-driven approaches have immense potential both for monolingual and for bilingual lexicography.

2.3.3 Corpus-driven lexicography

Corpus-based vs. corpus-driven approaches Although corpus-based and corpus-driven approaches are both based on the exploration of corpus data, there is a fundamental difference between them with regard to the role of observable data in formulating theories. According to Tognini-Bonelli (91):

"...in contrast with the corpus-based approach, the 'corpus-driven' approach where the corpus is used beyond the selection of examples to support or quantify a pre-existing theoretical category. Here the theoretical statement can only be formulated in the presence of corpus evidence and is fully accountable to it. This approach, it is argued, brings about a qualitative change in the description of language and shakes some major assumptions underlying traditional linguistics." (p. 11)

In corpus-driven lexicography the concept of meaning is the same as in the case of corpus-based approaches. That is, both methodologies grasp meaning primarily through the observation of language data, what makes the difference is the technique of observation.

Unsupervised learning techniques Corpus-driven approaches require a methodological shift in research. As we saw in Subsection 2.3.2.7 the size of available corpora continuously have been grown bigger and bigger. Analyzing such amount of data requires new techniques. One such approach is unsupervised learning which aims at finding hidden structures in unlabeled data. Relying on unlabeled data yields the advantage of eliminating unarticulated theoretical assumptions present in the labeling itself. Thus, these techniques decrease the role of human
intuition even further, but intuition is still not wholly excluded. Human intuition comes into play when selecting the investigated phenomenon, coming up with a representation set up, fine-tuning the parameters and throughout the evaluation (cf. Saldanha (84)).

Thus, in what follows, five research directions will be described, which in a way or another intend to characterize a language LU. The first method (Section 2.3.3.1) concentrates solely on verbal patterns. The second and third techniques (Sections 2.3.3.2 and 2.3.3.3) aim at building distributional thesauri completely automatically, while Sections 2.3.3.5 and 2.3.3.4 present two approaches, the ultimate goal of which is to create bilingual dictionaries in an unsupervised way.

2.3.3.1 Unsupervised extraction of verb frames

Objective This method, described in Sass (85) in more detail (cf. Chapter 7) aims at the unsupervised extraction of verb-centered constructions (VCCs) from corpora. Thus, it does not intend to build a sense-inventory comprising all the relevant LUs of the SL, instead—similar to Levin’s work and CPA—it concentrates on verbs. This technique treats VCCs with various structures alike in order to build a database comprising all relevant VCCs for any language. Here, various structure means that the algorithm is able to detect the complement structure of a verb, irrespective of its syntactic properties (e.g. the number of constituents, the syntactic function of the constituents or the order of the constituents). Moreover the method is able to determine if a head content word is inherently part of the VCC forming a multiword verb (e.g. *take into consideration*).

The significance of the algorithm lies in its capability to deal with multiword verbs and their valences simultaneously. At the same time the method is claimed to be language independent.

Workflow After the detection of noun phrases and their head elements the corpus is converted into a sequence of clauses assuming that every clause contains one and only one verb. In the following step frequent frames are counted in a cumulative way: One of the longest available subframe inherits small frequency random selection.
2. COMPILING THE HEADWORD LIST

VCCs and meaning However, as opposed to Levin, the technique does not aim at accounting for verbal meanings, instead, this approach strives to list all the salient constructions in which a verb may appear. Unlike CPA the extraction method does not give hints on the arguments semantic types and semantic roles. Instead, it lists all the salient collocates, even if they belong to the same semantic class. In the next sections we discuss some research directions whose objective is to grasp meanings on the basis of distributional data.

2.3.3.2 Synonymy detection: Sketch Engine’s thesaurus

Thesaurus In general usage, a thesaurus is a reference work that lists words grouped together according to similarity of meaning containing synonyms and sometimes antonyms. Thus, a thesaurus may be thought of as an SL LU, where the meaning of each SL word form is characterized by the list of similar words.

The automatic generation of thesauri The automatic generation of thesauri is a quite wide-spread technique in the NLP community to build monolingual sense-invetories. In accordance with Harris (39) distributional hypothesis, for each word, the words that share most contexts based on some suitable statistics are the best candidates to be synonyms.

In what follows, Sketch Engine’s thesaurus will be briefly introduced based on Rychlý & Kilgarriff (83). According to them\footnote{The novelty of the method is that it computes thesaurus on the basis of large corpora, for thesauri generally improve in accuracy with corpus size. We do not want to delve into technical details here: The basic idea is that they do not compare all word pairs, only those word pairs that do have something in common. This allows them to create thesauri from 1B corpora in under 2 hours.}, the automatic creation of thesauri is made up of three stages:

1. Taking a corpus,
2. Identifying contexts for each word,
3. Identifying which words share contexts.
For instance, the target word *objective* has the following words similar in meaning ranked according to descending similarity: *aim, target, strategy, point, principle, task*, etc.\(^1\)

Thesauri and meaning In this framework, a similarity measure is calculated, indicating the meaning distance between two words. In our view, such an approach is more compatible with Hanks (37) conception of meaning, i.e. meaning potential, discussed on page 42. Namely, it grasps the meaning potential of the keyword in terms of semantically similar words, but it does not provide us with a detailed list of possible contexts, where these similar words might show up.

Thesauri and multiple meanings Thus, in our opinion, Sketch engine’s thesaurus does not account for polysemy in itself. That is, albeit usually more than one semantically similar words are listed for a given keyword, the relation of these semantically similar words to each other is not indicated, e.g. whether they belong to the same semantic class or not. For instance, *bottle* is said to be similar both to *glass* and to *bag*, but it is not indicated whether these two word forms are similar to the very same sense of the keyword or they are related to two distinct meanings of it.

The synonymy-detection in the next section concentrates on how the polysemy of a word may be grasped by means on distributional data.

2.3.3.3 Synonymy detection: Near-synonyms for adjectives

Acknowledgement This work has been accomplished in tight collaboration with Dávid Takács (cf. Héja & Takács (40)).

Note that although the present investigation is only a proof-of-concept experiment, it presents insightful and illuminating ideas that play a great role in the present thesis (cf. Chapter 4). Therefore, we have decided to give a detailed overview on it, which may seem somewhat disproportionate.

\(^{1}\text{http://www.sketchengine.co.uk/documentation/wiki/Website/Features$\#Distributionalthesaurus}\)
2. Compiling the Headword List

Preliminaries The present experiment takes a step further than Sketch Engine’s thesaurus and tries to determine whether synonymy relation holds among the words that are in similarity relation to a given keyword. The basic objective of this thread of research is to build a system that is able to select the proper meaning of adjectives in contexts on the basis of a sense-inventory extracted from a monolingual corpus. Hence, the experiment aims at building a database that is able to capture polysemy and homonymy associated to a word form on the basis of possible contexts.

Just as all corpus-orientated approaches, this technique strongly builds upon Zellig Harris’ distributional hypothesis (Harris (39)), which states that words that are used and occur in the same contexts tend to purport similar meanings. Hence, contexts are investigated to derive meanings on the basis of them. Starting out from the distributional hypothesis the definition of synonymy may be formulated as follows:

Synonyms and near-synonyms Among many others, according to Ploux & Victorri (75), two lexical units are synonyms iff every occurrence of the one lexical unit can be substituted with an occurrence of the other lexical unit in every context so that the meanings of the corresponding utterances never change significantly.¹

On the other hand, they also define the notion of near-synonymy. Accordingly, two lexical units are near-synonyms iff every occurrence of the one lexical unit can be substituted with an occurrence of the other lexical unit in a certain set of contexts so that the meaning of utterance does not change significantly².

Near-synonymy and multiple meanings The notion of near-synonymy will be used to capture multiple meanings. Here, we suppose that near-synonyms represent one meaning of a given word-form W. That is, a word form W may

¹Deux unités lexicales sont en relation de synonymie pure si toute occurrence de l’une peut être remplacée par une occurrence de l’autre dans tout environnement sans modifier notablement le sens de l’énoncé dans lequel elle se trouve.

²Deux unités lexicales sont en relation de synonymie si toute occurrence de l’une peut être remplacée par une occurrence de l’autre dans un certain nombre d’environnements sans modifier notablement le sens de l’énoncé dans lequel elle se trouve.
belong to various near-synonym classes, thus these various near-synonymy classes are able to grasp the polysemy and homonymy belonging to W.

Multiple meanings and graphs Now, near-synonyms are represented by subgraphs exhibiting special properties. The underlying idea is that graphs are capable of representing a system of near-synonyms: Since every special sub-graph corresponds to a near-synonymy class, i.e. to a meaning, multiple sub-graphs of the same graph are able to represent that the given word-form W belongs to more near-synonymy classes, that is, it conveys multiple meanings.

Method The method described in Ah-Pine & Jacquet (2) was followed. However, as opposed to them, instead of the unsupervised creation of a lexical database suitable for named entity disambiguation, we intended to investigate how this method is applicable to disambiguate semantically more intricate word classes, such as adjectives. Because systematic polysemy is inherently present in the class of proper names, the different semantic classes of the denoted entities usually can be clearly told apart. In this proof-of-concept experiment we investigated whether their method is applicable to word classes with possibly more overlapping meanings, such as adjectives. Figure 2.3 depicts a graph each edge of which represents a sub-meaning of the highly polysemous Hungarian word *nagy* (great, big, etc.).

The outline of the applied technique is made up of the following steps:

1. Selecting the input corpus.
2. The detection of adjectives and their relevant contexts.
3. Constructing the distributional space of the adjectives based on the corpus.
4. Computing pairwaise similarities between the adjectives.
5. Computing the relevant sub-graphs of adjectives on the basis of the similarity matrix.
6. Retrieving the relevant contexts for each adjective-clique.
2. COMPILING THE HEADWORD LIST

Figure 2.3: Subgraphs representing polysemous meanings of the Hungarian word *nagy*

Description of the steps

Input data The input corpus was a sub-corpus of the Hungarian National Corpus (Váradi (99)) consisting of 1,877,661 tokens.

Detection of adjectives and their relevant contexts The corpus contained part-of-speech annotation. Nouns were used as relevant contexts for adjectives: The corpus contained 592,321 nouns, 203,685 adjectives and 143,682 adjective-noun pairs.

Constructing the distributional space The distributional space of the adjectives was constructed on the basis of the corpus. Let A denote the set of the adjectives and N denote the set of the nouns. The distributional space is given by the D adjective-noun matrix, where $1 \leq i \leq |A|$ and $1 \leq j \leq |N|$. The matrix element D_{ij} is computed by estimating the corresponding conditional probability:

$$P_{MLE}(N_j|A_i) = \frac{count(N_j,A_i)}{count(A_i)} \quad (2.3.1)$$

Threshold However, sufficient amount of data should be considered, when estimating the probabilities, thus, throughout our experiment we confined
2.3 Sense Inventories and Language Data

ourselves to the investigation of adjectives and nouns that occur more than 50 times.

Smoothing Unfortunately, the maximum likelihood estimation of each D_{ij} leads to sparse data, resulting in too many zero elements in matrix D. To handle this problem we relied on the Jelinek-Mercer smoothing that allows to distribute the probability mass found by the maximum likelihood estimation to contexts with zero occurrences.

$$P_S(N_j|A_i) = (1 - \lambda)P(N_j|A_i) + \lambda P(N_j|CORP)$$ \hspace{1cm} (2.3.2)

where $0 \leq \lambda \leq 1$. \hspace{1cm} (2.3.2)

Computing pairwise similarities between the adjectives Now, we are interested in the similarity of the probability distributions of adjectives. That is, the similarity of A_i is represented as $<D_{i1}, D_{i2}, D_{i3}, ..., D_{ik}>$ and A_j is represented as $<D_{j1}, D_{j2}, D_{j3}, ..., D_{jk}>$ vectors has to be calculated. Cross entropy (CE) was used for that purpose:

$$CE(A_i, A_j) = - \sum_{k=1}^{n} P_S(N_k|A_i)logP_S(N_k|A_j)$$ \hspace{1cm} (2.3.3)

Thus, the $A \times N$-matrix was sent into an $A \times A$ matrix.

Computing the relevant sub-graphs of adjectives In this step two questions have to be answered. First, we have to decide what counts as a sub-graph representing a (sub)meaning. Secondly, these sub-graphs have to be calculated on the basis of the similarity matrix somehow.

Cliques: Sub-graphs representing a meaning Following Ah-Pine & Jacquet (2) we have decided to use cliques as sub-graphs representing meanings. A clique is a subset of vertices in an undirected graph such that every

1The main insight behind smoothing is to give an estimation to unseen events. In the present experiment λ was set to 0.1. Thus, according to the formulae, the relative frequency of N_j in the corpus is given a relatively low weight, whereas, N_j relative to the adjectives is considered to be important.
two vertices in the subset are connected by an edge. Or to put it in an other way, a completely connected sub-part of the graphs is a clique.

Computing adjective cliques from the similarity matrix In this phase adjectival cliques are derived from the asymmetric $A \times A$ matrix. For that purpose the similarity matrix is converted into a binary and symmetric matrix such that each A is a node and each similarity between two As is an edge.

(i) The $A \times A$ matrix is symmetrized through selecting the greater CE value.
(ii) Then a certain threshold is introduced to map the values of the matrix elements to 0 or 1.
(iii) Adjectival cliques are searched from the resulting symmetric and binary $A \times A$ matrix.

Retrieving the relevant contexts for each adjective-clique A_i and A_j may belong to the same clique only if they have some contexts N_ks in common. For more than two A_is their common contexts will be the intersection of their pairwise common contexts N_ks. This intersection is rather straightforward to retrieve: Thus it was not stored separately.

Examples Since this thread of research is in an early stage, detailed evaluation was not performed. However, as the example presented below shows, the method enables the detection of interchangeable adjectives: In accordance with the definition of near-synonymy, the substitutability is constrained to certain contexts. These contexts are also automatically provided. Interestingly, without the explicitly given contexts, some of the examples are rather counter-intuitive even for native speakers. For instance, not a Hungarian speaker would accept that *nagy* (big) and *komoly* (serious) might be used as synonyms. However, this is exactly the case:

NAGY KOMOLY (big serious) baj (trouble), beruházás (investment), eredmény (result), erősítés (effort), feladat (task), gond (trouble), igény (demand), kihívás (challenge), kár (impairment), lehetőség (opportunity), munka (work), probléma (problem), pénz (money), segítség (help), siker (success), terv (plan)
Conclusion Obviously, this is only a proof-of-concept experiment and definitively needs much more effort to produce a reliable database, but from our perspective the initial results are rather insightful. The different meanings of "nagy"—characterized by other adjective(s) that may appear in the same set of contexts—are told apart solely on the basis of the following nouns. Consequently, these adjectives are interchangeable before certain nouns.

As we will see in Chapter 4, such a database might facilitate the creation of encoding dictionaries. However, as this is only the initial phase of research, this technique was not exploited when generating bilingual dictionaries. Yet, we think that this thread of research is worth pursuing for it has the potential of increasing coverage of dictionaries when combined with word alignment (cf. Section 9.2).

2.3.3.4 Bilingual lexicography: Detection of translation pairs in monolingual corpora

Preliminaries In Section 2.3.3.4 and 2.3.3.5 two bilingual extraction methods will be considered, only partially fitting in the framework of the present discussion, which concentrates primarily on monolingual sense-inventories. However, for the sake of completeness we have decided to shortly describe these two related research methods here. The research described in 2.3.3.4 is also in line with our starting hypothesis, i.e. that bilingual dictionaries are usually based on monolingual ones. As opposed to it, the research only briefly mentioned in 2.3.3.5 does not admit this presupposition.

Objective Mikolov et al. (69) aim at generating bilingual dictionaries on the basis of two independent monolingual corpora and a small seed dictionary. For doing so, they use distributed representations of words and phrases to infer missing dictionary entries.

Method The method is composed of two steps. First, the monolingual models of the corresponding languages are built using large amount of texts. Two models were used for that purpose: The CBOW model and the Skip-gram model. The objective of the
2. COMPILING THE HEADWORD LIST

CBOW model is to combine the representations of surrounding words to predict the word in the middle, while the Skip-gram model learns word vector representations that are good at predicting its context in the same sentence.

Since semantically similar words tend to occur in similar contexts, closely related words have similar vector representations, e.g., school and university, lake and river. More interestingly, as Mikolov et al. (69) claim, the vectors capture relationships between concepts, as well, via linear operations. For example, \textit{vector(France)} \textit{− vector(Paris)} is similar to \textit{vector(Italy)} \textit{− vector(Rome)}.

Next, a small bilingual dictionary was used to learn a linear projection between the languages. Any word that has been seen in the monolingual corpora can be translated by projecting its vector representation from the source language space to the target language space. That is, the relationship between vector spaces that represent these two languages can be captured by a linear mapping, namely, by a combination of rotation and scaling.

\textbf{Evaluation} English-Spanish translations with high confidence values yield a precision of 75\% in a first-best evaluation setup, as Mikolov et al. (69) report.

\textbf{Discussion} In the course of this experiment the vectors generated for English may be conceived of as the SL sense-inventory. Nevertheless, since one word-form \textit{W} is represented by a single vector, the vectors do not account for polysemies, inherently present in the language.

\textbf{2.3.3.5 Bilingual lexicography: Lexicon extraction from parallel corpora}

Recall that the present discussion is based on the presupposition that bilingual dictionaries are based on monolingual sense-inventories that have great impact on the quality of the resulting bilingual dictionary. In the case of automatic lexicon extraction from parallel corpora the SL sense inventory need not be previously characterized, rather it emerges as a result of finding the right translations for the SL word forms.

As the majority of this thesis discusses bilingual lexicon extraction from parallel corpora and the related issues, we do not want to delve into the details here, this approach was mentioned to describe an additional way of characterizing the SL sense-inventory.
2.4 Conclusion

2.3.3.6 Concluding remarks

Corpus-based and corpus-driven approaches With regard to the basic assumptions, corpus-driven lexicography is rather similar to corpus-based lexicography. Starting from Harris (39) distributional hypothesis, according to which *words that are used and occur in the same contexts tend to purport similar meanings*, it investigates contexts to derive meanings on the basis of them. Nevertheless, data plays a greater role than in corpus-based lexicography, at least as far as corpus-driven techniques are suitable to handle greater amount of data than corpus-based approaches.

Unsupervised learning techniques The aim of unsupervised learning techniques is to learn hidden structures from unlabeled data. Thus, unsupervised techniques eliminate unarticulated theoretical presumptions present in the labeling itself. However, human intuition cannot be completely excluded: It comes into play again when selecting the investigated phenomenon, coming up with a representation set up, fine-tuning the parameters and throughout the evaluation, as well.

2.4 Conclusion

The dictionary building process We started out from the traditional dictionary building process which comprises three phases. In the analysis stage the SL headwords are selected and characterized to be included in the dictionary. In the transfer phase the resulting SL LUs are translated into the TL. Finally, in the synthesis stage the final bilingual entry is completed.

Monolingual sense-inventories This chapter focuses on the analysis phase by giving an overview of some existing monolingual sense-inventories classified according to their relation to natural language data. These sense-inventories may serve as a possible basis for translation and greatly influence the quality of the resulting bilingual dictionary. Based on their relation to corpus data, traditional, corpus-based and corpus-driven approaches were distinguished.

Traditional approaches In traditional lexicography words and their meanings are the basic building blocks of language. Sentences are derived from these meaningful units in a compositional, thus, predictable way. Traditional lexicography presumes the following:
2. COMPILING THE HEADWORD LIST

(1) The basic blocks of language are word form–meaning pairs. Which means, that

 (i) Word forms do have meanings

 (ii) These meanings are fairly stable across different contexts

(2) Word–meaning pairs are stored in the inner lexicon of lexicographers and can be
 assessed by means of introspection.

From (1) it follows that contextual information does not play a great role in traditional
lexicography. While (2) has two questionable implications:

 (i) Everyone has a strong belief that they know exactly the meanings of a word.

 (ii) This knowledge is largely alike across the members of a language community.
 That is, meanings are objective or at least highly intersubjective entities.

In Chapter 4 the latter two assertions will be investigated and it will be proven that
both are false.

Corpus-based approaches As the great number of the corresponding projects indi-
cate, in our days it is widely accepted in the lexicographer community that high-quality
dictionaries are based on corpora. The main reason behind this is that linguistic data
decreases the role of human intuition during lexicographic process, thus rendering the
description of the investigated phenomena more intersubjective.

As a first conception of meaning Hanks\(^{37}\) view was accepted, according to which, in
corpus-based lexicography the basic building blocks of language are words with their
meaning potentials. This is primarily due to the fact that possible contexts greatly
influence the possible meanings of a word.

Such a concept of meaning entails a more restricted view on productivity and thus
compositionality: It does not suffice any more to rely primarily on part-of-speech in-
formation, when indicating how to use a word grammatically. Instead, a more subtle
description of words' behavior is needed by carefully observing the set of contexts in
which the word in question may appear. Such a methodology requires that lexicogra-
phers are provided with abundant language data.

And if the contexts can be neatly characterized, the meaning of a word-form can be
given in terms of near-synonyms, which are interchangeable in a certain set of contexts.
Corpus-based lexicography presumes the following:
2.4 Conclusion

(1) The meaning of words’ is highly dependent on the contexts in which they occur. This view on meanings is compatible with (at least) two interpretations:

(i) Word forms do not have meanings in themselves, but they have meaning potentials.

(ii) Words tend to be highly polysemious that show up with different meanings in different contexts.

(2) In either case, the various meanings can change significantly across different contexts.

(3) Because of the increased role of contexts in the description of meanings, introspection in itself does not provide a proper ground for the sufficient characterization of LUs. Therefore,

(a) The lexicographic intuition should be underpinned by corpus evidence.

(b) Moreover, a sound linguistic theory is needed to draw lexicographers’ attention to the lexicographically relevant facts (cf. page 33).

(c) In addition, for the same purpose, the exploitation of lexical profiling tools turned out to be indispensable, too, as corpus size increased (cf. page 40).

Drawbacks One serious practical disadvantage is that manufacturing a full-fledged sense-inventory is rather tedious requiring so much resource that is usually unavailable in the case of less resourced languages.

However, as it was discussed earlier (cf. page 33), the wealth of language data may raise additional problems for lexicographers when compiling monolingual sense-inventories. Namely, lexicographers should be able to select the relevant linguistic facts and describe them in a consistent way. This task in turn is becoming more and more difficult as the corpus size increases. We saw that lexical profiling tools and linguistic theories may help in selecting the relevant facets of language data and describe them in a consistent way.

Corpus-driven approaches With regard to the basic assumptions corpus-driven and corpus-based approaches are rather similar. Starting from Harris’ distributional hypothesis, according to which words that are used and occur in the same contexts tend to purport similar meanings, corpus-driven approaches investigate contexts to derive
2. Compiling the Headword List

meanings on the basis of them. Probably, data plays a greater role, than in corpus-based lexicography, at least as far as corpus-driven techniques are suitable to handle greater amount of data than corpus-based approaches.

This is primarily due to the fact that the methodology has changed and unsupervised learning techniques became widely used for natural language processing tasks. The aim of unsupervised learning techniques is to learn hidden structures from unlabeled data. Thus, unsupervised techniques eliminate unarticulated theoretical presumptions present in the labeling itself. However, human intuition cannot be completely excluded: It comes into play again when selecting the investigated phenomena, coming up with a representation set up, fine-tuning the parameters and throughout the evaluation, as well.
3

The Translation Phase

Irrespective of the current status of equivalence in translato
tology, lexicography can definitely learn some-
thing from the decades of discussion [...]. Foremost
among the conclusions reached is the impossibility
of formulating a single universally valid definition of
equivalence.

——— Adamska-Sałaciak (1)

3.1 Introduction

Translation Recall the workflow of dictionary building. As Figure 3.1 indicates, after
characterizing the SL sense-inventory, the resulting senses should be translated into the
target language. Thus, in this framework, the process of building a bilingual dictionary
can be decomposed into three steps: In the first stage the source language LUs are
characterized (analysis stage). In the next phase these LUs are translated (translations
stage). Finally, the translated LUs (TRs) are compiled so that they could be included
in a dictionary.

Linking However, Figure 3.2 depicts an alternative approach to the creation of bilin-
gual dictionaries. In the first step two monolingual sense-inventories are characterized
independently and in the next step instead of translating the SL monolingual database,
the corresponding items of the SL and TL language databases are linked.
3. THE TRANSLATION PHASE

Figure 3.1: - Dictionary building: Translation

Figure 3.2: - Dictionary building: Linking

In either case, translation relation has to hold between the corresponding SL and TL LUs. Chapter 3 focuses on the characteristics of translation relation.

Is translation relation a relation? Note that translation relation is a technical term in the field of bilingual lexicography. In fact, translation relation is not necessarily a relation in the mathematical sense. For the present chapter we presume that translation relation ρ is a mathematical relation: $\rho \subseteq A \times B$, where A is the SL vocabulary and B is the TL vocabulary. By the end of the chapter we will see what properties should translation relation ideally exhibit and in Chapter 4 we will see which mathematical construction corresponds to these expectations even better. For that purpose let us consider the properties of translation relation more closely.

3.2 Translation Equivalency: The Best Translations

Interlingual synonymy Ideally, the relation of interlingual synonymy should hold between translation pairs. As an extension of the definition of monolingual synonymy
3.2 Translation Equivalency: The Best Translations

(cf. page 50), interlingual synonymy can be conceived of as complete interchangeability, that is, the TL expression and the TL expression may occur exactly in the same set of contexts. Unfortunately, a perfect interlingual synonymy is only occasionally available. As Atkins & Rundell (7) puts it:

[...] pure synonymy is rare across languages, except for the names of concrete objects which the two cultures share. (p. 134-135)

Translation equivalency Thus, instead of interlingual synonyms, translation equivalents should be assigned to SL headwords, which can be thought of as the ”best” equivalents. In the following sections the main types of translation equivalents will be examined based on Adamska-Salaciak (1). In her paper she focuses on the following questions:

(1) What is the nature of the relationship between an SL headword and its corresponding TL equivalent (e.g. identity, interchangeability, similarity)?

(2) Is equivalence a unitary concept or should different types thereof be recognised?

(3) Is equivalence ‘discovered’ (does it exist prior to being established by the lexicographer) or is it ‘created’ by the lexicographer’s act?

We also add a further question that needs to be answered:

(4) Is there a methodology that is able to ensure that the best translation be included in the dictionary?

3.2.1 Relation between SL and TL headwords (Q1):

3.2.1.1 Translation relation is closeness

Based on the definition of interlingual synonymy we presuppose that translational identity and translational interchangeability are synonymous notions for the present discussion. As for the relation between SL and corresponding TL headwords there is a common agreement among lexicologists and lexicographers, namely, that

the relationship is definitely weaker than identity: merely (maximum) closeness. Adamska-Salaciak (1)
3. THE TRANSLATION PHASE

3.2.1.2 Arguments against interchangeability

According to her the reasons behind this are at least twofold:

(1) **Interchangeability and stylistic value** First, interchangeability also presumes that equivalents have not only the same lexical meaning (if there is such thing), but also the same stylistic value. This expectation is especially important in the case of encoding dictionaries to be able to produce ‘a smooth translation’. According to Adamska-Salaciak (1) to find such perfect equivalents is impossible in most cases due to inherent divergencies in the structures and vocabularies of languages.

(2) **Interchangeability and symmetry** Secondly, interchangeability or identity relations should be symmetric. However, as many author noted (cf. 3.3.2) dictionaries tend to be assymetrical, that is, in many cases the TL expression is either more general or more specific than the SL expression. For instance, as she puts:

the equivalent of both boyhood and girlhood in German is Kindheit (an instance of convergence), but if we start from the German word and look for its equivalent in English, we are likely to think of childhood, not boyhood and/or girlhood. (p. XXXX)

Figure 3.3 depicts the above example: The continuous arrows are representing the translation from English to German, while the dashed arrow stands for the reversed translation.

![Diagram](image-url)

Figure 3.3: Translations of English LUs to German and back
3.2 Translation Equivalency: The Best Translations

3.2.1.3 Discussion of the arguments

The first argument The first argument is basically the same as that of Atkins & Rundell [7], which states that translation synonymy is rare across languages.

The second argument The second argument considering asymmetry needs to be given a closer look. How can we interpret the statement that translation relation, as opposed to interchangeability (or identity), is asymmetric?

Translation relation as relation First, translation relation ρ cannot be asymmetric (neither symmetric nor antisymmetric) relation in the mathematical sense. These properties are defined as follows:

\begin{align*}
\text{Symmetric} & : \forall a,b \in X, a \rho b \Rightarrow b \rho a \\
\text{Asymmetric} & : \forall a,b \in X, a \rho b \Rightarrow \neg (b \rho a) \\
\text{Antisymmetric} & : \forall a,b \in X, a \rho b \land b \rho a \Rightarrow b = a
\end{align*}

As the definitions indicate, symmetry, asymmetry and antisymmetry hold only for homogenous relations, where domain A is the same as range B. This requirement definitively does not hold for bilingual dictionaries, where the SL vocabulary A and the TL vocabulary B cannot coincide. That is, translation relation is neither symmetric, nor asymmetric, nor antisymmetric in the mathematical sense.

Example Let us consider a small part of a Hungarian-English dictionary to illustrate the possible connections between the elements of the SL vocabulary A and the TL vocabulary B.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{dictionary_mapping.png}
\caption{Mapping between the SL vocabulary A and the TL vocabulary B}
\end{figure}

Translation relation as mapping As Figure 3.4 represents, a dictionary as a mapping between A and B exhibits the following properties:
3. THE TRANSLATION PHASE

(1) Every \(a \in A\) has at least one translation \(b \in B\).

(2) Conversely, every \(b \in B\) is the translation of at least one \(a \in A\).

(3) The dictionary contains one-to-many mappings from \(A\) to \(B\).

(4) The dictionary contains many-to-one mappings from \(A\) to \(B\).

Thus, as Figure 3.4 indicates, the mapping might be extremely intricate, allowing both many-to-one and one-to-many mappings between the elements of \(A\) and \(B\) vocabularies.

Symmetric translation relation is an invertible function Recall the example of Adamska-Sałaciak (11) illustrating that translation is an asymmetric relation. The example, depicted in Figure 3.3, explicitly states that translational asymmetry means that

(1) In many cases the TL expression is either more general or more specific than the SL expression

(2) In some cases an SL word \(a \in A\) the translation of which is the TL word \(b \in B\) is not included in the TL' vocabulary \(A'\) in the reversed dictionary (e.g. boyhood/girlhood ⇒ Kindheit ⇒ childhood).

From (1) it follows that a symmetric translation relation \(\rho\) does not allow either one-to-many or many-to-one mappings. Whereas, (2) implies that for every \(a \in A\), \(a\) should be part of the reversed dictionary, that is, be accessible as the reversed translation of \(\rho(a) = b\). Accordingly, \(\rho^{-1}(\rho(a)) = a\), for every \(a \in A\). This two requirements are satisfied iff the translation relation \(\rho\) is an invertible function.

Thus, on the basis of Adamska-Sałaciak (11) if the translation relation \(\rho\) is symmetric, then can be thought of as an invertible function, whereas, if asymmetric, it can be conceived of either as a non-invertible function or a relation which is not a function.

Closeness and quantifiability On top of that, we do not have reason to consider closeness less symmetric than identity, since intuitively, if \(a\) is close to \(b\), than \(b\) is also close to \(a\). The same holds for similarity, too.

Nevertheless, considering translation relation as closeness, raises the question of quantifiability. If translation relation is closeness, we might ask how close \(a \in A\) and \(b \in B\) are? Is \(b \in B\) closer to \(a \in A\) than \(c \in B\)? That is, is \(c\) a better translation of \(a\) than \(b\)?
3.2 Translation Equivalency: The Best Translations

Consequently, translation relation should be “asymmetric”, i.e. a non-invertible function or a mapping, which is not a function. On the other hand, interpreting translation relation as closeness implies that translation relation should be quantifiable, so that it could serve as a measure for comparing translations.

In the next section we will consider the types of translation relation that are distinguished in lexicography. The classification in Adamska-Salaciak (1) is discussed here, but as she notes, there is a wide agreement in the literature on the categories itself, albeit various authors tend to use different names for the various translation relations.

3.2.2 Types of translation equivalency (Q2):

If translation equivalency is a gradual notion, i.e. if it could only be defined as ‘closeness’, certain types of it might be distinguished:

Cognitive equivalence Although cognitive equivalence was originally conceived of as cross-lingual synonymy and thus was the expected type of equivalence in a traditional bilingual dictionary, this notion has been extended to include more common types of equivalents, too. According to Adamska-Salaciak (1) cognitive equivalents are very general counterparts of the SL LU, and therefore are capable of conveying the overall meaning of the SL headword, but, by the same expression, appropriate as its translations only in some contexts. It must cover the prototypical senses of the headword, but not necessarily its less central or more specialised senses.

Cognitive equivalence tends to be symmetric—that is, it tends to be an invertible function: In such cases it does not matter which language is the SL and which is the TL.

Contextual equivalence As interlingual synonymy is rare, cognitive equivalents are expected to cover only the prototypical senses of the SL headwords, hence, translational gaps may remain even if cognitive equivalents are available. Contextual equivalence is particularly important where no direct translations are available.

1Cognitive equivalents are referred to as direct translations in 8.2.2
2Cf. “a cognitive equivalent has to be identical with the source expression on all relevant dimensions of meaning” Piotrowski (hivXXX1994: 139)
3In this case the term of Atkins & Rundell is relied on. The motivation behind is to avoid the confusion that the original term translation equivalence may cause
3. THE TRANSLATION PHASE

As Zgusta asserts:

when choosing a translational insertible equivalent, the main concern is given (...) to its ability to be used in a fluent, good translation of whole sentences, to be inserted into contexts of the target language.

Thus, it follows that the TL equivalent should be a lexicalized item of the TL. Translational equivalents are particularly useful in the case of encoding dictionaries. However, according to Adamska-Sałaciak (1), a bilingual dictionary could never give all type of translation equivalents of a given SL item, because it is impossible to predict all the contexts in which the item can occur.

Explanatory equivalence This type of equivalence appears as TL gloss in Atkins & Rundell (7). The explanatory or descriptive equivalent is chosen in order to give information about the lexical unit of the SL by means of free syntagmas (Zgusta). Explanatory equivalents might be free syntagmas, as well. Descriptive equivalents are rather on the notional than on the purely linguistic level, thus they are quite general.

Explanatory equivalents may be especially useful in the case of decoding dictionaries, if the user is a native speaker of the TL and wants to understand SL sentences.

Functional equivalence Functional equivalence can be thought of as saying the same thing with other words. According to (Zgusta 1984: 151)

Since languages differ in all imaginable respects, the translator-lexicographer must sometimes use means quite different from those used in the original in order to obtain the same results. If the different means do produce the same effect, the texts are considered functionally equivalent.

Functional equivalents are the same as near-equivalents in Atkins & Rundell (7). They illustrate functional equivalency with the French expression *A comme André* and with its translation *A for Able* in English. In this case, the TL expression is not a cross-lingual synonym of the SL expression, since the French word *comme* is basically translated as *like, as, just as, just like* into English and *André* is definitively not translated as *Abel* into English. Although the two phrases are not direct translations, they are equivalent expressions, used exactly under the same circumstances. In functional equivalency, the SL and TL items
are often culturally equivalent. Thus, functional equivalence is sought, often as a last resort, wherever it is impossible to provide a lexical equivalent of the headword.

Nevertheless, in our view, the notion of functional equivalence rests upon the hypothesis the words do have lexical meanings. Functional equivalency may be thought of as a multi-word contextual equivalence, where the component words are not translated or at least not with their lexical meaning (cf. André is translated as Abel). Therefore, we have decided to disregard the category of functional equivalency in the rest of the thesis.

3.2.2.1 Gradual nature of the translation relation

If translation relation may be better interpreted as closeness or similarity than interchangeability or identity, the gradual nature of translation relation has to be accounted for somehow. In the present section two scales will be introduced.

Cognitive equivalence and translation equivalence Cognitive equivalence and translation equivalence might be conceived of as two ends of a continuum. While the SL and TL expressions may appear exactly in the same contexts in the case of perfect cognitive equivalency, the translation equivalent may show up only in certain contexts. That is, *the number of contexts in which a translation may appear can be a good indicator of how close the translation equivalent is to cognitive equivalency.*

Explanatory equivalence and translation equivalence According to Adamska-Salaciak, explanatory and translation equivalence form a continuum, too, from a different perspective. If a translational equivalent has no explanatory value at all, it’s use is limited to rather restricted contexts. On the other end of the scale, if the translation is wholly explanatory, i.e. is given as a definition, it impedes the production of idiomatic texts in the TL. Thus, as Adamska-Salaciak notes:

> The boundary between the two kinds of equivalence is not sharp. Rather, Zgusta treats translational insertability and explanatory power as properties which one and the same equivalent may possess to different degrees: an ideal equivalent should be both insertable and explanatory. Irrespective of whether such an equivalent is available or not, the complementary properties of insertability and explanatory power should both be present in a bilingual dictionary entry.
Explanatory equivalence and cognitive equivalence In our view, perfect cognitive equivalents are explanatory equivalents, too. Explanatory power of the TL expression helps the TL speaker to understand the SL LU. Since cognitive equivalents are synonyms, the TL cognitive equivalent describes the meaning of the SL LU for the TL speaker. This goes without any question in the case of technical terms of specialized languages, which tend to be translated by means of cognitive equivalents. Thus, if we restrict the classification only to lexicalized items we could say that explanatory power of a translation may be proportional to the number of different context in which a translation may show up.

Explanatory and translation equivalence do not form a scale Moreover, as opposed to Adamska-Salaciak (1) we think that explanatory equivalents and contextual equivalents do not form a scale. Recall, that while the former in its clear form is a definition or a gloss, that is, it is not lexicalized element of the TL, contextual translations always are lexicalized in the TL. Here, we suppose that an expression is either lexicalized element of a language or not, i.e. this is a binary decision. If this presupposition holds, contextual equivalents and explanatory equivalents cannot form a scale.

Yet, explanatory power can be assigned to various translations which are situated on the contextual equivalency—cognitive equivalency scale. This hypothesis corresponds to the observation that a cognitive equivalent should exhibit maximal explanatory power. Note that on the other end of the scale there is pure contextual translations in the case of which only one TL context is suitable for inserting the given TL LU. This extremity exhibits no explanatory power.

Nevertheless, we do not consider insertibility and explanatory power the same notion. The main reason behind is that listing synonyms or near-synonyms beside the TL LU in question increases the explanatory power of that expression. Therefore, explanatory power is not only the function of insertibility but also a function of the other synonyms or near-synonyms that may appear in the same set of contexts. Nevertheless, this thread of research was not investigated, so we do not want to delve into details here.

The connection between various types of translation relation is summarized in Figure 3.5:
3.2 Translation Equivalency: The Best Translations

![Diagram showing three types of translation relations: Cognitive eq., Explanatory power, Explanatory eq., and Contextual eq.]

Figure 3.5: The three types of translation relation

3.2.3 Is equivalence discovered or created? (Q3)

Although the third question—whether translational equivalence is discovered or created—seems to be of somewhat philosophical nature, it has a special significance on the topics discussed so far. The same question discussed in Chapter 2 arises here again in a multilingual context: Are the relations between SL and TL language LUs 'out there', merely awaiting discovery, or are they non-preexistent entities that need to be created during the course of dictionary compilation? The firm belief in pre-existent equivalence relation between pre-existent meanings entails the conviction that translations are objective—or at least highly intersubjective entities, readily available for expert bilingual lexicographers. From this it follows that relying on one’s own intuition and introspection should yield the same result in every case. On the other hand, if translation equivalencies are created entities, they allow for greater variation even for the same individual on different occasions.

As Adamska-Salaciak (11) suggests, a more subtle distinction is in order here according to the type of equivalency:

It appears that as many as three of our four types are 'created' (constructed online) rather than 'discovered'. The only exception is cognitive equivalence, whose identification by skilled bilinguals is characterised by a high degree of intersubjective agreement, which may culminate in its objectification. A competent bilingual speaker can access a TL cognitive equivalent of a SL item offline, that is, without being provided with
3. THE TRANSLATION PHASE

any context. Lexicographers have traditionally been assumed to belong in this group of skilled bilinguals, the uninformed view being that they can produce equivalents more or less effortlessly. When it comes to cognitive equivalence, this view is just about right; in all other cases, things are much more complex.

Thus, Adamska-Salaciak (1) puts a great emphasis on the role of context when finding the best translation.

3.2.4 Expectations toward the automatically attained translation relation

In what follows, we will give a brief summary of the properties of the translation relation that should be retrieved automatically.

(1) As translational synonymy/cognitive equivalency is rare, translation relation is best conceived of as closeness.

(i) Closeness is gradual: As we saw in Figure 3.5 cognitive and translational equivalencies constitute a scale according to insertability and explanatory power. In order to find the best translation, a suitable method should be found that is able to measure where the TL equivalent is situated on the scale. As both cognitive equivalence and contextual equivalence can be defined in terms of the set of contexts in which they may appear, presumably, contexts of the SL and the TL should be heavily relied on.

(ii) Closeness should be also quantifiable so that the best translation could be selected.

(iii) As ”symmetric” translation relation is rare (i.e. when the translation is an invertible function), the automatically attained translation relation should capture this asymmetry somehow. Note that the gradual, possibly quantifiable notion of translation equivalence is incompatible with the binary view of translation pairs, therefore with the mapping view of translation.

(2) We also expect the dictionary to enable the user both to understand the unfamiliar language (cf. decoding dictionaries), and to produce smooth translations (cf. encoding dictionaries).
3.3 Linking monolingual sense-inventories

3.3.1 Introduction

Translation In the previous section we investigated the translation relation. The translation relation might emerge as the result of translating the SL sense-inventory. In fact, translating a monolingual sense-inventory is the most common way of producing a bilingual dictionary.

Linking An alternative approach is linking. In this case we start out of two independently characterized monolingual sense-inventories. In the next step the entries of the two databases are aligned. The essential benefit of linking over translation is that the monolingual databases are designed in a way that enables reusability via reversibility or via the hub-and-spoke model. Reversibility will be discussed in section 3.3.2 while the hub-and-spoke model will be covered in Section 3.3.3.

Figure 3.6: Dictionary building: Linking - SL and TL LUs are independently characterised. In the next phase the corresponding LUs are linked

As Figure 3.6 indicates, during the course of linking lexicographers are ideally provided with two neatly characterized monolingual sense-inventories, one for the SL and one for the TL. This means in fact that dictionaries compiled through linking are expected to be symmetrical, that is, SL and TL are expected to be interchangeable (see Martin 62). This entails that the translation relation should be also symmetrical in this case. Consequently, although translation relation considered to be prevalently asymmetric in

73
3. THE TRANSLATION PHASE

translated dictionaries, as opposed to them, translation relation is expected to be symmetric in the case of linking dictionaries. As we will see, this expectation completely corresponds to the "invertible function” interpretation of symmetric translation relation. In Section 3.3.2 the main preconditions of reversibility of a bilingual dictionary will be considered.

3.3.2 Reversibility

Reversibility and symmetry
A bilingual dictionary is said to be reversible if the source language and the target language are interchangeable. Symmetry of translation and reversibility of the dictionaries are tightly related notions. The dictionary is reversible, iff "ρ translation relation is symmetric”, i.e. ρ is an invertible function. In this case for every $a \in A$ if $\rho(a) = b$ then $\rho^{-1}(b) = a$, that is, $\forall a \in A \rho^{-1}(\rho(a)) = a$. In other words, ρ should be a one-to-one mapping between the SL vocabulary A and the TL vocabulary B.

Reversibility and the linked LUs
Now, we have seen that the reversibility of a dictionary means that the translation relation ρ is an invertible function. From a dictionary user perspective it is also required that entities linked should be of the same type (cf. Martin (62)).

With regard to the types and properties of the linked entities, Veldi (96) indicates three main reasons that impede the successful reversion:

1. The TL side of the dictionaries tend to comprise explanations rather than cross-lingual synonyms or near-synonyms. In this case the SL side of the reversed dictionary would comprise definitions instead of headwords.

2. The provided equivalents are inaccurate or vague.

3. Lexical poverty with regard to the range of possible equivalents, resulting in a low coverage of the TL vocabulary.

Reversibility and cognitive equivalency
Recall that cognitive equivalents are the best candidates to be included in a reversible dictionary. This is basically due to the fact that the translation relation ρ of cognitive equivalents is a one-to-one mapping. Moreover, cognitive equivalence relation links entities strictly of the same type.
3.3 Linking monolingual sense-inventories

Nevertheless, as cognitive equivalency is only rarely available, reversibility is a property that should be anticipated in the design of a bilingual dictionary, according to Veldi (96). In what follows, we will consider a project which aimed at compiling a wealth of reversible dictionaries by means of linking.

3.3.2.1 The CLVV Project

In accordance with the objectives of the CLVV project during the period 1993-2007 twenty dictionaries were constructed. In all cases Dutch was either the SL or the TL. The average dictionary comprises 45,000 entries with rich microstructures. From a meta-lexicographic point of view the dictionary projects had two main purposes:

(1) To put the linking method into practice and constructing reversible dictionaries

(2) To prove that on the basis of two reversible dictionaries further dictionaries can be generated in a semi-automatic way (hub-and-spoke model) (see 3.3.3.1 in this chapter).

Linking is enabled by the following features:

(1) Instead of associating pure word forms they associated suitably characterized LUs.

(2) The design of the monolingual Dutch database (RBN) is such that it enables the linking method (cf. 2.3.2.6).

(3) OMBI dictionary editor tool facilitates the definition of reversible meaning pairs.

OMBI dictionary editor tool Based on the detailed presentation found in Maks (59), the main advantage of OMBI dictionary editor tool is that it helps the creation of reversible bilingual dictionaries. This tool was used in about half of the CLVV projects. As Tamm & Martin (89) puts:

While the editing function is busy creating a bilingual database X to Y, and as such taking in translations from X to Y, OMBI simultaneously stores the reversed counterparts, thereby building a reverse database Y to X. The end result is a non-directional bilingual database, from which databases and/or dictionaries in both directions can be automatically derived at a subsequent stage.
3. THE TRANSLATION PHASE

Accordingly, the editor is composed of three main components:

1. Two language components where each language is described as a fully autonomous monolingual resource, without being tailored as a source or a target language. The resources are consisting of form units, lexical units and example units.

2. An interlingual component which is a collection of links between lexical units and example units of the two languages. Additional constraints on reversibility might be also defined, therefore unreversible links can be also used, if it is necessary.

Moreover, OMBI also classifies the translations into different classes according to their reversibility. Although the editor helps in the development of reversible dictionaries, the need of post-editing still remains.

Linking and less resourced languages Unfortunately, linking is not directly applicable in the case of less resourced language pairs to produce bilingual dictionaries. The main reason behind is that suitable databases usually are not available for such languages. Note, that even if a neatly characterized sense-inventory was available for that languages, linking should be performed to compile bilingual dictionaries. The objective of the hub-and-spoke model is to decrease the number of linking procedures needed to create bilingual dictionaries. Accordingly, in what follows, the hub-and-spoke model will be described.

3.3.3 Linking monolingual databases via a hub

3.3.3.1 Hub-and-spoke model

The aim of the hub-and-spoke model (Martin (62)) is to generate multilingual dictionaries from reversible bilingual dictionaries. On an abstract level, the hub-and-spoke model follows the steps bellow:

1. The first step is the generation of a reversible bilingual dictionary with languages A and B. \((A \leftrightarrow B)\)

2. The next step is adding a third language in a reversible fashion to the language A, thus generating the links \(A \leftrightarrow C\).

3. Finally, the links between C and B should be inferred by means of derivation rules, creating the links \(B \leftrightarrow C\).
In this case, language A was the hub language and languages B and C were the spoke languages. Therefore, spoke-languages are not linked directly to each other but via the hub-language.

Note that the hub-and-spoke model works properly only on reversible dictionaries. The underlying reasons are the following:

1. Let ρ_{AB} the translation relation translating from A to B, whereas ρ_{AC} translates from A to C. It is quite easy to see that both ρ_{AB} and ρ_{AC} should be invertible functions, that is, one-to-one mappings mapping every element $a \in A$. This means that $\rho_{AB}(a) = b$ and $\rho_{AB}^{-1}(b) = a$. Similarly, $\rho_{AC}(a) = c$ and $\rho_{AC}^{-1}(c) = a$.

Now we are looking for the translation relations ρ_{BC} mapping from B to C and ρ_{CB} mapping from C to B so that $\rho_{BC}(b) = c$ and $\rho_{CB}(c) = b$ if ρ_{AB} and ρ_{AC} are given. Then, $\rho_{CB}(c) = \rho_{AB}\rho_{AC}^{-1}(c) = b$ and $\rho_{BC}(b) = \rho_{AC}\rho_{AB}^{-1}(b) = c$.

Were ρ_{AB} and ρ_{AC} non-invertible functions, c and b could not be uniquely linked.\(^1\)

2. The entities linked should be cognitive equivalents—recall, the best candidates for reversible dictionaries—or neatly characterized LUs of the same level of semantic specification in all three languages.

3.3.3.2 The CLVV Project

In the framework of the CLVV project (Martin 62) the hub-and-spoke model was put into practice by the derivation of a Danish-Finnish dictionary from the Dutch-Finnish and Dutch-Danish dictionaries. Consequently, Dutch played the role of the hub and Danish and Finish were the spoke-languages. As for Dutch, they relied on the Reference Database of Dutch, while the corresponding Danish and Finnish monolingual databases were produced in parallel with the bilingual dictionaries. The most important requirements for the successful merging were met:

1. The entries of spoke language databases are of the same structure.

2. They showed the same level of semantic specification.

\(^1\)However, there is one case, when this statement does not hold, namely, if there is a homonymy in B (for instance, crane in a spoke-language English) which similarly appears as homonymy in C (for instance, Krahne in a spoke-language German), as well, but which is designated by different word forms in the hub-language A.
3. THE TRANSLATION PHASE

(3) The core of the example units is largely alike.

The linking process between the spoke languages is semi-automatic because post-editing is needed, but the amount of labour is reduced drastically.

3.3.3.3 Linking wordnets and framenets via a hub

When considering the hub-and-spoke model the question naturally arises if it is possible to exploit sense-inventories produced for multiple languages for that purpose.

For its wide coverage regarding various languages, wordnets seem to be a reasonable choice. National wordnets are usually the results of translating the Princeton WordNet and thus, these wordnets are aligned to Princeton WordNet. Therefore—although not one-to-one mapping—the linking is given beforehand. However, as national wordnets tend to be the result of translation, the TL vocabulary is probably not representative of the TL. This entails the unfortunate consequence that linking wordnets of lesser-used languages is likely to result in poor dictionaries. This adverse finding impels us to not exploit wordnets for our purposes, even if wordnets cover a great number of languages and for that reason applying the hub-and-spoke model to wordnets might seem to be a promising thread of research.

As opposed to wordnets, due to their corpus-based nature, FrameNet-type databases seem to be the ideal candidates for the hub-and-spoke model. Unfortunately, the restricted number of currently available framenets makes it pointless to apply the model.

3.4 Conclusion

3.4.1 Types of dictionaries

The various projects discussed so far, both in Chapters 2 and 3 are summerised in Figure 3.7 below.

Sense-inventories and corpus data The upper half of the figure indicates the SL sense-inventories according to their relation to corpus data, as discussed in the previous

1Currently Chinese, Brasilian, German, Spanish and Japanese FrameNets are listed on the project’s website at https://framenet.icsi.berkeley.edu/fndrupal/framenets_in_other_languages
3.4 Conclusion

chapter. Accordingly, introspective, corpus-based and corpus-driven approaches are distinguished. Similarly, the bottom part represents the TL sense-inventories, which also can be corpus-based or corpus-driven with regard to their relation to corpus data. Nevertheless, instead of 'introspective' the category label 'NO' is relied on, indicating that in several cases the sense-inventory is merely the result of translation and such, cannot be considered as an independent sense-inventory.

Translation or linking The TL sense-inventory might be the result of translating the SL data-base, or might be characterized independently of the SL sense-inventory. In the latter case the relation between the two is linking. Various possibilities are depicted in the figure below, where the thick line arrows represent the process of translation, while the dashed double arrows stand for linking. Some examples are also listed under each nodes. Note, that as Figure 3.7 indicates, the two properties, i.e relation to corpus data and the type of correspondence between the SL and TL LUs are slightly interrelated characteristics.

Dictionaries of type (a) and (b) Accordingly, edge (a) represents dictionaries typically for lesser used language pairs (e.g. Bojtár (II)) or WordNets being translated from the PWN. Edge (b) typically denotes dictionaries with a well-resourced SL and a lesser used TL. Dictionaries of type (a) and (b) are not really apt for being reversed, as the TL language vocabulary is not representative of the TL language. This kind of dictionaries tend to serve decoding purposes.

Dictionaries of type (c) and (d) On the other hand, edges (c) and (d) are dictionaries, where both the SL and TL sense-inventories are characterized independently and due to the corpus-based method the TL vocabulary of the dictionary should comprise the important lexemes of the TL. This makes linking possible, which in turn is the prerequisite of reversibility. We are not aware of type (d) dictionaries but compiling dictionaries in this way seems to be theoretically possible. CLVV dictionaries represent type (c) dictionaries. Linking FrameNets may also result in type (c) dictionaries, but owing to the limited scope of languages for which FrameNets are available, only a few language pairs—typically well-resourced ones—can be covered. Both (c) and (d) type dictionaries may be useful for encoding.

Dictionaries of type (e) and (f) Although theoretically it is possible to link two automatically characterized databases manually, linking took place automatically in both experiments discussed in Sections 2.3.3.4 and 2.3.3.5 Here, albeit edges (e) and (f) are of the same type and map from the same node to the same node, they
3. THE TRANSLATION PHASE

Figure 3.7: Possible approaches to building a bilingual dictionary

represent different techniques. In the first case the sense-inventories are characterized independently by means of vectors and then are mapped through a combination of rotating and scaling. Note that this technique does not produce sense-inventories, that is, it retrieves translation pairs without treating polysemy.

As opposed to (e), (f) is a quite wide spread technology in the NLP community to produce bilingual lexicons for computational purposes. Similarly, to dictionaries of type (e), word alignment does not create sense-inventories, rather it operates on mere word forms. Nevertheless, as opposed to (e) dictionaries, (f) dictionaries as bilingual dictionaries are able to handle multiple meanings.
3.4 Conclusion

As we will shortly see, (f)-type dictionaries are the focus of the remaining part of thesis. In fact, we aim to prove that *dictionaries of type (f) are suitable for not only computational purposes but for human end-users, too*. Moreover, such automatically generated dictionaries have certain benefits over traditional or corpus-based dictionaries. For a more detailed presentation see Chapter 4.

Dictionary types and the hub-and-spoke model
Due to the requirements put forward by Martin (62) discussed in Section 3.3.3.2 in more detail, dictionaries which are the result of translation do not easily lend themselves to be spoke-hub dictionaries (e.g. the TL vocabulary for the lesser-used language is not reliable). Thus, neither dictionaries of type (a) nor of type (b) are suitable for generating hub-hub dictionaries. This entails the unfortunate consequence that linking wordnets of lesser-used languages is likely to result in poor dictionaries. This adverse finding impels us to not exploit wordnets for our purposes, even if wordnets cover a great number of languages and for that reason might seem to be a promising thread of research.

As opposed to this, due to their corpus-based nature, FrameNet-type databases seem to be the ideal candidates for the hub-and-spoke model. Unfortunately, the restricted number of currently available framenets makes it pointless to apply the model.

The CLVV dictionaries were designed in a way that enables the semi-automatic generation of a hub-hub dictionary. However, the creation of the suitable databases is quite a tedious task. Consequently, the idea to use the hub-and-spoke model in the generation of dictionaries for lesser used languages was rejected.

3.4.2 Expectations toward a suitable methodology

As it was discussed in Chapters 2 and 3, the suitable methodology has to meet expectations concerning the relation to language data, the characteristics of translation relation and has to be economical.

Relation to language data

(1) The reliance on intuition should be decreased.

As it was discussed in Chapter 2, traditional lexicography is prevalently based on intuition or citation collecting. As opposed to it, the corpus-based approach heavily relies on language data, but it works best in the presence of an underlying linguistic theory that helps lexicographers to interpret the linguistic phenomena in question.
3. THE TRANSLATION PHASE

in the same way. Meaning-Text Theory, Levin’s theory of verbs, FrameSemantics and Theory of Norms and Exploitations were covered in Section 2.3.2. However, such theories may have their own unarticulated presuppositions, that again calls into play lexicographers’ intuition when making decisions on vague issues.

Some of the assumptions can be eliminated through relying on unlabeled data, therefore, applying an unsupervised learning technique seems to be a reasonable choice. Consequently, a data-driven approach should be exploited to construct bilingual dictionaries by possibly relying on an unsupervised learning technique.

(2) Contexts should play a great role when characterizing meanings both in the TL and in the SL.

(3) Since we are planning to build encoding dictionaries1, ample example sentences from real language use are also required to give hints on the proper use of the target expressions.

Translation relation

(1) The translation relation is supposed to be primarily asymmetric except for cognitive translation relation, which turned out to be restricted to special semantic domains, such us natural kinds or artefacts that the two cultures have in common. We saw that the ”symmetry” of ρ translation relation means that ρ is an invertible function. Therefore, that ρ is asymmetric if either it is a relation and not a function or if it is a function it is not invertible. Thus, the automatically attained translation relation should be asymmetric in the above sense.

(2) Translation relation should be thought of as closeness instead of identity or interchangeability. In fact, strict interchangeability holds only in the case of cognitive equivalence.

(3) If translation relation is best conceived of as closeness, i.e. it is a gradual notion, it should be quantifiable, so that the best translation could be selected among the possible translation candidates. However, due to its gradual nature, translation relation cannot be thought of as a a relation in the mathematical sense, as, in fact, mathematical relation is a binary decision indicating whether a given LU-pair is

1Recall that according to Melčuk (65) they are more complex than decoding ones, thus easily convertible into decoding dictionaries by adding some extra features regarding look-up mechanisms.
part of the dictionary or not. Thus, a better mathematical notion has to be sought for to quantify translation equivalence.

(4) Closeness has two aspects to quantify over:

(a) **Translational insertibility**: Translational insertibility is a good measure of the perfect translation, i.e. translation equivalency: Perfect translations are cognitive equivalents, which are interchangeable in every possible contexts. On the other end of the scale we find mere contextual translations, that are insertable only into a single context. Recall that the main requirement toward a contextual translation that it should produce a smooth translation in the TL. Most translations are somewhere between these two extremities, and the automatically attained translation relation should be able to estimate where the translation is situated on the scale.

(b) **Explanatory power**: As Figure [3.5] indicated, cognitive equivalents exhibit high explanatory power, whereas a pure contextual translation is a TL LU which can be inserted into the TL text, but does not tell the user much about the meaning of the SL expression. Thus, these contextual translations does not have explanatory power. Nevertheless, we do not discuss explanatory power separately, instead, we focus on translational insertibility throughout this thesis.

(5) Moreover, an additional expectation is raised by Adamska-Salaciak [1], who claimed that it is impossible to give all type of contextual translations for a given SL item, since we cannot predict all the contexts in which an item can occur. As we will see, the proposed technique comes up with a solution to this problem, or rather it is reduced to the problem of corpus representativeness.

Economical considerations On top of the above considerations the proposed technique should satisfy certain economical requirements, too.

(1) The proposed method has to be economical, consequently hand-crafted databases are not suitable for our purposes. This excludes corpus-based methods.

(2) The method is expected to be language independent and easily re-applicable, thus, a consistent methodology is searched for, which is more or less independent of the peculiarities of SL and TL.

(3) The resulting dictionaries should be easily reversible.
3. THE TRANSLATION PHASE

The main finding of this thesis is that the automatic estimation of conditional probabilities on the basis of parallel corpora, which is a widely used method in the natural language processing community but primarily for machine translation purposes, is able to meet the above requirements.

The rest of the thesis is devoted to this topic. Chapter 4 explores to what extent conditional probability may serve as translation relation, especially in the case of encoding dictionaries.
4

Encoding Dictionaries and Conditional Probability

Zgusta (1984: 147) stipulated that, ideally, a bilingual dictionary should provide “real lexical units of the target language which, when inserted into the context, produce a smooth translation” […]. As we know – and as Zgusta knew better than anyone else – these are highly unrealistic expectations.

——— Adamska-Sałaciak

4.1 Introduction

The previous chapters were centered around the dictionary building process: In Chapter 2 various sense-inventories were investigated primarily with regard to their relation to corpus data, while in Chapter 3 the main properties of translational relation were elaborated. We have also made a distinction between decoding and encoding dictionaries, claiming that the latter ones are more intricate to produce, thus the creation of encoding dictionaries may impose additional constraints on the sense-inventories A and B and on the translation relation ρ. Therefore, we are now in the position of considering our mottos:
4. ENCODING DICTIONARIES AND CONDITIONAL PROBABILITY

In order to say what a translation relation is, we may first ask what the translation relation does, and then find something that does that.

The present chapter is made up of two main parts: First, we examine what kind of properties an SL sense-inventory should necessarily exhibit to serve as a basis for an ideal encoding dictionary. Secondly, we aim to show that conceiving translation relation as conditional probability conforms these criteria.

SL sense-inventories and word sense disambiguation In an encoding environment we are aware of the meaning of the source expression and want to find the contextually best translation for it, i.e. the translation that produce the "smoothest translation" when put into TL contexts. Recall that as opposed to decoding dictionaries, in the case of encoding ones linguistic competence plays a much greater role, as in this case we cannot rely on common sense knowledge or situational information readily available in decoding environments.

Thus, high-quality encoding dictionaries—more than decoding ones—require an SL sense-inventory, where the meanings are or can be contextually anchored. But how do we know that we are "aware of the meaning of the SL expression"? We consider the meaning of an expression known, if most native speakers assign the same meaning to it, when put into sufficiently specified contexts. This task is called word-sense disambiguation (WSD). Accordingly, an appropriate SL sense-inventory should enable us to obtain good results on word sense disambiguation tasks. There are a couple of ways to measure the quality of word sense disambiguation.

Inter-annotator agreement In the present discussion we confine ourselves to quantify the results in terms of inter-annotator agreement: Accordingly the sense inventories should be characterized in a way that high inter-annotator agreement may be achieved on sense disambiguation tasks. In Section 4.2 four word sense disambiguation experiments will be presented, yielding the result that none of the investigated sense inventories corresponds to our expectations.

Main characteristics of SL sense-inventories Given the results of the word sense disambiguation experiments some conclusions can be drawn regarding the main characteristics of SL sense-inventories for encoding dictionaries. First, a sense-inventory should consist of ample contextual information, which can be relied on when selecting the best sense for the given context. Moreover, ideally, senses should be divided in a way that facilitates the unique assignment of word occurrences to a specific meaning. Such a division is called partition and it will be discussed in Section 4.2.2.5 in more detail.
4.2 Word Sense Disambiguation Tasks

Since corpus-based monolingual dictionaries are compiled on the basis of great amount of language data they might be suitable to serve as the starting point for high-quality encoding dictionaries. However, the production of hand-crafted SL sense-inventories requiring so much effort that is usually not available in the case of lesser used languages. Therefore, instead of exploiting neatly characterized SL sense-inventories an other alternative should be considered.

Extracting bilingual dictionaries on the basis of word alignment

In the second part of this chapter our basic objective is to prove that contrary to what Adamska-Salaciak (1) believes Zgusta’s view on bilingual lexicography is not unrealistic, at all. On top of that, retrieving ”real lexical units of the target language” can be achieved completely automatically. For that purpose we introduce word alignment on parallel corpus—a technique, which is widely known in the natural language processing community, but as far as we know, has not been used in real lexicographic project until now.

Section 4.3 introduces word alignment on parallel corpora through giving an intuitive picture of it. The following issues are addressed in this section:

(1) To what extent the automatically attained translation relation does satisfy the expectations put forward in Chapter 3? (Section 4.3.2)

(2) How translation equivalents are retrieved during the process of word alignment? (Section 4.3.3)

(3) How translation equivalents can be conceived of? (Section 4.3.4)

(4) To what extent the proposed technique itself does meet the expectations put forward in Chapter 2? (Sections 4.3.6 and 4.3.7)

4.2 Word Sense Disambiguation Tasks

In Subsection 4.2 four studies (Véronis (100); Kuti et al. (53); Héja (42)) will be presented. All the experiments are aiming at determining to what extent it is possible to select the most appropriate meaning of a word in context on the basis of sense distinctions in traditional sense inventories. We presume that contexts are never un-

1That is, how difficult it is to assign the right meaning to words in context without explicitly given distributional information
4. ENCODING DICTIONARIES AND CONDITIONAL PROBABILITY

described, that is, theoretically it is possible to determine the right meaning based on the provided contexts.

The most appropriate meaning can be thought of as the one that is selected with high agreement. Accordingly, the experiments presented below measure the agreement among annotators i.e. inter-annotator agreement. In what follows, a concise description of the inter-annotator measures will be presented based on Artstein & Poesio (4).

4.2.1 Measures of inter-annotator agreement (ITA)

Observed agreement One simple approach to determine ITA is the percentage agreement or observed agreement (A_o):

$$A_o = \frac{1}{i} \sum_{i \in I} agr_i$$

(4.2.1)

However, this measure of ITA does not account for cases where agreement is due to chance. One of the two factors that influences chance agreement is the number of categories used in the annotation task: The fewer categories are used to classify a certain phenomenon the higher agreement by chance might be expected. Since various sense-inventories contain diverse divisions of senses, our measure has to handle such cases to be able to compare the usefulness of sense-inventories above chance.

Chance-corrected agreement The calculation of the chance-corrected inter-annotator agreement coefficients takes chance agreement into consideration (A_e):

$$A_o = \frac{A_o - A_e}{1 - A_e}$$

(4.2.2)

Here $1 - A_e$ measures how much agreement over chance agreement is attainable, while $A_o - A_e$ tells us how much agreement over chance agreement was actually found. In cases where agreement is lower than expected, this measurement unit can take a negative value. The closest the obtained value is to 1, the higher the possibility that the agreement between the annotators is not by chance.

Chance-corrected agreement for two coders Two widely used chance-corrected coefficients of ITA between two annotators are Scott’s π (1955) and Cohen’s κ (Cohen (22)).
4.2 Word Sense Disambiguation Tasks

Scott’s π assumes that if coders were operating by chance alone, their assignment would yield the same distribution for each coder, thus A_e does not reflect individual annotator bias. Cohen’s κ only differs from Scott’s π in that it presupposes separate distributions for each of the coders.

Thus, in the case of Scott’s π the prior distribution is estimated on the basis of the observed assignments, i.e. the total number of assignments to the categories by both coders divided by the overall number of assignments where n_k stands for the total number of assignments to category k and i for the number of items to be assigned. The estimation of the prior distribution:

$$\frac{n_k}{2i} \quad (4.2.3)$$

Then, given the assumption that coders act independently, expected agreement is determined as follows, where K designates the set of categories:

$$A^e_\pi = \frac{1}{(2i)^2} \sum_{k \in K} n_k^2 \quad (4.2.4)$$

Chance-corrected agreement for multiple coders However, being invented for two annotators, Scott’s π is not apt to measure agreement among multiple coders. Therefore, we relied on Fleiss’s multi-π (Fleiss (33)) throughout our analysis, which is a generalization of Scott’s π for multiple coders. The basic idea behind this coefficient is that A_o cannot be thought of as the percentage agreement defined above. This is due to the fact that in the case of multiple annotators necessarily there will be items on which some coders agree and others disagree. The proposed solution is to compute pairwise agreement as the proportion of agreeing judgment pairs and the total number of judgement pairs for that item. The overall A_o will be the mean of the pairwise agreement for all items. Here i stands for the number of items, c for the number of coders, and n_{ik} for the number of times an item is classified in category k. I denotes the set of items while K denotes the set of categories, for instance the senses in the sense inventory.

$$A_o = \frac{1}{(ic)(c-1)} \sum_{i \in I} \sum_{k \in K} n_{ik}(n_{ik} - 1) \quad (4.2.5)$$

In the case of multiple coders A_e i.e. the agreement by chance might be conceived of as the probability that two arbitrary coders would make the same judgement for a particular item by chance. Holding the same presuppositions about the distribution of the judgements as Scott, A_e is calculated in the same way as in the two coder case,
4. ENCODING DICTIONARIES AND CONDITIONAL PROBABILITY

except for the fact that instead of 2 coders c coders make the assignments, that is c assignments need to be considered, when calculating the mean.

An additional advantage of Fleiss’s multi-π and Cohen’s κ is that they are both insensitive to categories that were never selected by any of the annotators, therefore the results do not reflect how many categories the annotators could originally choose from.

4.2.2 Studies

4.2.2.1 Véronis’ first experiment

Experimental setup Véronis (2003) first experiment was concerned with agreement on polysemy – that is, the extent to which coders agreed that a word was polysemous. Six fourth-year linguistic students were asked to decide whether a word in context of one paragraph has multiple meanings or only one single meaning in the case of 600 occurrences of 600 French words (200 nouns, 200 verbs, 200 adjectives). Besides, the answer ‘I don’t know’ was also available. Note, that if a context was underspecified regarding polysemy, the relevant answer would be ‘I don’t know’. The low proportion of such answers (4.05%) implies that the majority of contexts were specific enough to make a decision on polysemy.

Results Interestingly, in spite of the low rate of ‘I don’t know’ answers there was a considerably low agreement regarding the polysemous nature of the words in contexts: 0.67 for adjectives, 0.36 for nouns and 0.37 for verbs in terms of the extended version of Cohen’s κ to multiple coders.

According to Véronis these results show that:

individual informants had no trouble making spontaneous judgements, but different informants tended to make different judgements. (page XXX)

4.2.2.2 Véronis’ second experiment

Experimental setup The 20 words from each category perceived by the coders in this first experiment to be most polysemous were then used in a second study. 3724 occurrences of the words in question had to be sense-tagged in the context of a one-paragraph text on the basis of the Petit Larousse explanatory dictionary by 6 different
4.2 Word Sense Disambiguation Tasks

forth-year students in linguistics. Annotators were instructed to choose either one sense, or several senses if they felt that more than one was appropriate in the given context. They could also choose no sense at all, if they felt that none of the senses listed in the dictionary fit the context. Therefore, in this experiment multiple choices or zero choice might have been an indicator if a context was not specific enough for the selection of a single sense. The inter-annotator agreement was computed using the generalized version of Cohen’s κ to multiple coders.

Results The inter-annotator agreement in terms of Cohen’s κ for multiple coders was relatively low for all the three investigated POS-categories: 0.41 in the case of verbs and adjectives and 0.46 for nouns. Considering the fact that usually 0.8 is accepted as a threshold for reliable agreement (see Artstein & Poesio (4)), the obtained values imply that Petit Larousse senses are not suitable for the sense-tagging of tokens in their contexts.

4.2.2.3 Experiments of Kuti et al.

A similar study was carried out for Hungarian verbs (Kuti et al. (53)) based on two different sense inventories yielding approximately the same conclusion.

Experimental setup One of the sense inventories used was the Hungarian Explanatory Dictionary, which is the official reference work as a Hungarian monolingual dictionary. Another sense inventory tested was the Hungarian WordNet (HuWN) (Miháltz et al. (68)). HuWN is a lexical database, modeled partly upon the Princeton WordNet 2.0 (PWN) (Fellbaum (27)) for English. The basic unit of HuWN, as of all wordnets, is a synset and not that of traditional dictionaries, i.e. a lexeme. It is important to note that when deciding on what verb senses should be incorporated into the Hungarian verbal WordNet, automatically extracted information about argument structures was taken into account, as well. Therefore, the sense distinctions in HuWN are partially based on distributional information. Five different annotators sense-tagged 30 occurrences of 15 verbs in one-sentence context on the basis of both sense-inventories. The possible answers were the following: any of the sense-labels in the inventories, ‘neither sense fits’, ‘I don’t know’. Just as in the case of Véronis’ first experiment the rate of ‘I don’t know’ answers was considerably low, implying that in the majority of cases the one-sentence contexts were specific enough. The inter-annotator agreement was determined using Fleiss’s multi-\(\pi \) (Artstein & Poesio (4)).

Results The average Fleiss’s multi-\(\pi \) was 0.3 in the case of the Hungarian Explana-
4. ENCODING DICTIONARIES AND CONDITIONAL PROBABILITY

4.2.2.4 Automatic WSD of verbs in context based on PWN

In this experiment, the verbal part of Princeton WordNet 3.0 (PWN 3.0) (cf. 2.3.1.2) was used as a monolingual dictionary.

Princeton WordNet In WordNet each synset consists of the headword and its synonyms, the description of the sense and a unique identifier of the given synset. Example sentences are also listed. This is how a node of PWN 3.0 looks like:

introduce, present, acquaint (ID) (Definition: cause to come to know personally)
"permit me to acquaint you with my son"; "introduce the new neighbors to the community"

Figure 4.1: A synset of Princeton WordNet 3.0

PWN 3.0 comprises 11529 verbal lemmata with 25047 meanings and 10759 example sentences.

Syntactic analysis In the first step the deep syntactic parsing of the example sentences was performed with Xerox Incremental Parser (Aït-Mokhtar & Chanod (3)). Based on the deep syntactic analysis word sense disambiguation rules were generated automatically in the next step. These rules assigned the ID of the relevant synset to verbs occurring in similar sentences.

For instance, the synset of check was converted into the disambiguation rule presented in in Figure 4.2.

Disambiguation rule 4.2 states that if the verb check has:

(i) an object whose lemma is growth and

(ii) an adjunct with the semantic role place and

This experiment was performed during an internship at XEROX Research Centre Europe under the supervision of Caroline Brun in 2008.
4.2 Word Sense Disambiguation Tasks

Check (1131473)(hold back, as of a danger or an enemy; check the expansion, influence of) "Check the growth of communism in South East Asia";

Conversion

\[if((obj(check, growth)) \& prep[in](check, somewhere)) \Rightarrow synset(check, 1131473). \]

Figure 4.2: A disambiguation rule

- the adjunct is attached to the verb through the preposition `in` then

the verb *check* has the meaning marked with 1131473 in PWN 3.0.

Annotating the test corpus with senses In the third step a test corpus was analyzed with the automatically generated disambiguation rules. Semcor corpus (Miller *et al.* (70)) was used for that purpose. Semcor 1.6 was the first version, which was the result of tagging a part of the Brown Corpus (Francis & Kučera (34)) with WordNet 1.6 senses. Later versions are automatic updates by mapping synsets in subsequent versions of WordNet to synset tags in Semcor\(^1\). Semcor is made up of 352 texts. In 186 texts all of the open class words (nouns, verbs, adjectives and adverbs) are annotated with part-of-speech tags\(^2\), lemma and WordNet synset, while in the remaining 166 texts only verbs (41,497 occurrences) are annotated with lemma and synset. These 166 texts (17,308 sentences) were used for testing purposes.

In the test phase, the verbs in the test corpus were automatically tagged with PWN 3.0 senses on the basis of example sentences in PWN 3.0. It is important to emphasize that the disambiguation rules were rather specific, since beside syntactic patterns they also referred to specific lemmata. Hence, our previous expectation was to obtain only a few but correctly disambiguated verbs.

Example The disambiguation rule in Figure 4.2 assigns the synset 1131473 to *check*.

Results Interestingly, the results were much worse than expected. They were also

\(^1\) Note, that in our experiment in the annotation phase PWN 3.0 was relied on, while PWN 2.1 senses were used for testing. This is due to the fact that Semcor 3.0 was not available at that time.

\(^2\) The POS tags were assigned by the Brill tagger (Brill (13)).
4. ENCODING DICTIONARIES AND CONDITIONAL PROBABILITY

Example: The White House is taking extraordinary steps to check the rapid growth of juvenile delinquency in the United States.

Figure 4.3: An example sentence of SEMCOR 2.1

compared to a baseline method which assigns the most frequent meaning—the first meaning in PWN 3.0—to the target word. With the baseline technique 35% of all the verb occurrences were tagged with the right meaning. As opposed to this, the generated disambiguation rules assigned the right meaning only to the 30.7% (296) of all verbal occurrences. Thus, according to our results, applying the disambiguation rules result in a considerably lower precision and recall than using the baseline rules, where recall equals to 100%.

To validate our surprisingly unfavourable results the precision of the syntactic analyzer was checked, too. The generated disambiguation rules were reran on the original PWN 3.0 example sentences. A result of 98.7% was obtained in terms of precision, which confirms that precision should have been relatively high.

Discussion Manual check of 100 hits showed that low precision is mainly due to wrong PWN annotations in the manually annotated SEMCOR 2.1. For instance, check in the example sentence above was annotated with an other meaning in spite of the specific contextual hints. This observation is also supported by the relatively high precision of the baseline technique, which reflects that human coders tend to annotate with the first sense in a sense-inventory. This in turn raises the question of how to rank meanings in a dictionary.

4.2.2.5 Discussion

The above studies have yielded two important conclusions:

(1) Native speakers tend to strongly believe that they are aware of the precise meanings of their mother tongue’s lexemes. Nevertheless, their intuitions only rarely coincide in practice.

(2) An SL sense-inventory that easily lends itself to serve as a basis of a bilingual dictionary should guarantee high inter-annotator agreement while annotating senses in a corpus. Hence, contextual information should play a much greater role in characterizing meanings to provide explicit anchors during the disambiguation.
4.2 Word Sense Disambiguation Tasks

These observations are in accordance with the expectations put forward in Section 3.4.2. Certainly, these experiments are unable to prove that hand-crafted sense inventories are not suited for obtaining high inter-annotator agreement. However, the results underpin that distributional data have to be carefully explored and taken into consideration when constructing such databases. As it was mentioned earlier, since building sense inventories that exploit linguistic information as much as possible is rather expensive, this approach is typically not affordable in the case of lesser-used languages. That is why it would be particularly important to find a method that facilitates the creation of such monolingual databases or to use a different dictionary building method.

Dividing the ”translation space” Based on the experiments discussed above we may raise the following expectations toward an ideal encoding dictionary:

(1) Each SL headword should be characterized in a way that each occurrence of that headword could be clearly assigned to a unique meaning. That is, there is no such occurrence that may be assigned to two different meanings.

(2) It is also presupposed that meanings are non-overlapping entities.

The necessity of requirement (2) is illustrated with some definitions of the English verb have in PWN 3.0. In accordance with the overall design of PWN, the various meanings of the verb are characterized by various synsets.

<table>
<thead>
<tr>
<th>Synset 1: have or possess, either in a concrete or an abstract sense</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synset 2: have ownership or possession of</td>
<td>...</td>
</tr>
<tr>
<td>Synset 3: have a personal or business relationship with someone</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.4: Occurrences of have in various synsets of Princeton WordNet 3.0

As the example sentences show, both Synset 2 and Synset 3 can be subsumed under Synset 1. Since these synsets are strongly overlapping, a similar disambiguation task for have may yield high inter-annotator agreement only by chance.

Partition over a set Expectations (1) and (2) closely resemble to the set theoretic notion of partition described in 4.3.4 in more detail. The partition of a set \(A \) is made up of mutually exclusive (non-overlapping) subsets \(A_i \) so that the union of the subsets \(A_i \) equals to \(A \). In our case \(A \) is made up of the occurrences of the SL word. The partition
over A comprises A_is so that every A_i consists of some occurrences of the SL word. Every occurrence belongs to a subset A_i and no occurrence belongs to two subsets. These subsets may be labelled somehow through words occurring in the same contexts or through salient contexts. Trivial examples of such partitions are homonyms.

Example—homonymy Let us take a word form, such as the English *nail*. This word have (at least) two completely unrelated meanings: One sense refers to the 'pin-pointed piece of metal' and the other sense to 'a horny covering on the upper surface of the tip of the fingers and the toes'. Except for underspecified context, every occurrence of *nail* can be uniquely assigned to any of the two senses. Since the meaning of each occurrence is distinct and clear-cut, it is not difficult to find the right translation that suits the relevant contexts.

![Figure 4.5: Partition over the occurrences of nail](image)

Example—related senses However, in the majority of cases the various senses of a word are related to each other in a way or another. Therefore, the question arises, how a partition may be created in the case of more intricate polysemies. Recall the result of the experiment discussed in [2.3.3.3](#). Here interchangeable adjectives were detected based on a corpus along with their typical contexts. Some examples were:

- NAGY SZÉP (big nice) eredmény (result), siker (success), teljesítmény (achievement)
- NAGY MÉLYSÉGES (big profound) bánat (sorrow), fájdalom (pain)

Here, the results are creating a partition over the occurrences of the Hungarian word *nagy*. The subsets of occurrences are labelled both by means of possible near-synonyms and by means of salient contexts. For instance, if *nagy* is occurring before bánat or

1Underspecified contexts are not considered here.

2Near-synonyms refer here to words that are interchangeable in certain contexts.
4.2 Word Sense Disambiguation Tasks

fájdalom it means the same as mélységes. On the other hand if nagy is occurring before the nouns eredmény, siker, teljesítmény it appears with a slightly different meaning and has szép as a synonym. Since the contexts are non-overlapping, we are about to create a partition over the occurrences of nagy. These results are correlating with the English translations: profound is a possible translation of the Hungarian word nagy but only in the context of pain and sorrow. Hence, such neatly characterized SL sense-inventories might serve as a basis for high-quality encoding dictionaries.

Producing high-quality encoding dictionaries Therefore, there are two alternatives to produce high-quality encoding dictionaries:

(1) In accordance with the dictionary building process described in Section 2.2.2 at first the senses and subsenses of the SL word should be characterized in a way that they create a partition over the occurrences of the SL word, for example by means of contextual anchors or near-synonyms. In this case meaning may be conceived of as labels on partitions over SL word occurrences. Labels are composed of near-synonyms and contexts. In the next step these senses should be translated so that they fit into the possible target sentences. Nevertheless, in the absence of such a neatly characterized database it is difficult to see how partition could be created.

(2) An other alternative is that we disregard word senses and try to retrieve translations by directly creating a partition of TL word forms over the SL word form. This is what word alignment on parallel corpora does.

Partition over meanings Therefore, organizing SL senses into partitions could be indispensable for high-quality encoding dictionaries. The experiment described in 2.3.3.3 can be a first step into that direction. Partition could be also essential in verifying the systemacity of natural languages. As Szabó puts it:

And do all who understand ‘halfway closed’ and ‘firmly believed’ also understand ‘halfway believed’ and ‘firmly closed’? As Johnson (2004) argues, the claim that natural languages are systematic presupposes a natural non-overlapping linguistic categorization of all the expressions. The existence of such a categorization is a bold empirical hypothesis.

Therefore, we consider this thread of investigation a promising future research direction.

\[1\] Of course, at the present stage of research this partition is far from covering all occurrences of nagy.
4. ENCODING DICTIONARIES AND CONDITIONAL PROBABILITY

In the next section we turn to monolingual dictionaries and to how they handle the issue of ranking various senses of the headword. From our perspective, this question plays an important role, as in the traditional approaches, which follow the methodology in Section 2.2.2 the ranked senses determine the order of translations.

4.2.3 How to order meanings in a monolingual dictionary?

The senses in the SL sense-inventory should be ranked to present the senses in a consistent way within the dictionary. The criterion of ranking obviously determines the order of translations, too. As Atkins & Rundell (7) describes SL senses might be ranked according to three different aspects.

Historical order This method presents the senses of a headword in the order in which they entered the language. However, probably this aspect is rather indifferent to the ordinary user of a bilingual dictionary, thus arranging the senses along this criterion does not seem to be a user-friendly approach.

Frequency order Frequency order reflects which meaning occurs in the language the most frequently. In spite of the apparent benefits this approach has serious shortcomings. As Atkins & Rundell (7) puts it:

> The attraction of this method is its apparent objectivity. Further, it can plausibly be argued that the meanings which are encountered most frequently are the ones that users are most likely to look up – so it makes sense to show them first. In practice, this frequency-based approach is a good deal less straightforward than it sounds. First, it requires a well-balanced corpus. Second, determining the relative frequencies of the meanings of a polysemous word can never be an exact science because word senses are not objectively stable entities.

This observation is confirmed by the word sense disambiguation experiments described in Subsection 4.2.2. To determine which are the most frequent senses in a database, the database should comprise ample distributional information so that the corpus could be sense-tagged appropriately. In the absence of such database it is not possible to select the most frequent meaning. Moreover, the higher a sense is ranked under a headword by the human annotator the higher the probability that it will be assigned.

1The relatively high precision of default rules on Semcor 2.1 in the fourth experiment is in
4.3 Conditional Probability and Translation Relation

to the occurrences of the headword. Thus, without satisfactory contextual information
the original structure of the sense-inventory influences the occurrence of the senses in
question in the corpus.

Semantic order In this case the core meaning of a headword comes first. The core
meaning is the one that is the most central meaning of a word. The judgement is based
on intuition, that is why, this is the least scientific ordering according to Atkins &
Rundell [7]. Interestingly, this ranking method is favoured by most dictionaries partly
because it is relatively easy to apply, and partly because it is felt to give the user the
most satisfying account of meaning.

How to order meanings? Because the order of meanings in the SL side determines
the order of translations in the TL side of a bilingual dictionary, the ranking of senses
is an important issue from the perspective of bilingual dictionaries, too. However, the
problem of SL sense ordering would be eliminated completely, if we could leave out
SL senses from the dictionary compilation process. Again, as indicated on page [97]
dictionaries generated on the basis of word alignment fully meets this expectation.

Translation relation Moreover, the proposed technique should not only treat the
SL meanings somehow, but should be able to retrieve the best translation for each SL
word. This is an additional requirement toward the method to be applied. In the next
section word alignment on parallel corpora will be introduced and we will also discuss
how it is able to handle the problems that have been raised so far.

4.3 Estimation of Conditional Probabilities on the Basis of Parallel Corpora

The main finding of this thesis is that automatic estimation of conditional probabilities
on the basis of parallel corpora is a technique which may significantly contribute to
bilingual lexicography. Although this technique is widely known and exploited in the
machine translation community, as far as we know, no lexicographic projects have made
use of it to compile bilingual dictionaries.

In the present section we consider to what extent the proposed method is able to fulfill
the requirements formulated in the previous and the present chapters. Accordingly,
4. ENCODING DICTIONARIES AND CONDITIONAL PROBABILITY

(i) How parallel corpus is able to ensure high inter-annotator agreement?

(ii) To what extent could conditional probability be interpreted as translation relation?

(iii) Does the proposed method is able to create a partition over the SL word? (So that the translations could be ranked automatically?)

(iv) Is the best translation found?

(v) Is the proposed method data-driven?

(vi) To what extent does the proposed technique pay off from an economic point of view?

The following sections (4.3.1, 4.3.2, 4.3.4, 4.3.6 and 4.3.7) are devoted to the discussion of these issues. The algorithm itself is described in Chapter 5 in more details.

4.3.1 Conditional probability

Parallel corpus and inter-annotator agreement In the framework of the proposed technique the inter-annotator agreement may be interpreted as measuring the agreement of translators of corpus texts. That is, automatically attained translation-candidates show how frequently a TL expression is assigned to the SL expression, thus capable of indicating the commonly used, recurrent translations. Therefore, automatically attained conditional probabilities measure the inter-annotator agreement among human translators. In what follows, we will consider conditional probability in more detail.

Basic notions of probability theory Before focusing on conditional probability let us introduce some basic notions of probability theory. Let Ω be the sample space. The sample space is the set of all possible outcomes. Thus, in the case of coin tossing $\Omega = \{\text{head, tail}\}$. For tossing two coins, $\Omega = \{(\text{head, head}), (\text{head, tail}), (\text{tail, head}), (\text{tail, tail})\}$. An event is defined as any subset A of the sample space Ω.

Kolmogorov axioms

(i) $0 \leq P(A) \leq 1$ for all $A \in \Omega$
(ii) \(P(\emptyset) = 0 \) and \(P(\Omega) = 1 \). Hence, the probability of the entire sample space is 1, and the probability of the null event is 0.

(iii) If \(\{ A_i : i \in I \} \) is a countable collection of pair-wise disjunct sets, then \(P(\bigcup_{i \in I} A_i) = \sum_{i \in I} P(A_i) \)

Conditional probability Conditional probability is defined as follows: Let \(\Omega \) be the sample space and \(A \) and \(B \) events, so that \(A, B \subseteq \Omega \). Then,

\[
P(A|B) = \frac{P(A \cap B)}{P(B)} \tag{4.3.1}
\]

In general, conditional probability measures the probability of event \(A \) given that (e.g. by evidence) event \(B \) has occurred. If we wish to measure the probability of event \(A \) knowing that event \(B \) has occurred we need to examine event \(A \) as it is restricted to event \(B \). That is, in the case of conditional probability, \(\Omega \) is restricted to \(B \). Since both \(A \) and \(B \) are events in \(\Omega \), \(A \) restricted to \(B \) is \(A \cap B \). Whenever \(P(B) > 0 \) with the original probability measure on the original sample space \((\Omega, P) \), \(B \) must be the sure event in the restricted space \((B, P_B) \) and thus \(P_B(B) = 1 \).

To derive \(P_B(A) = P(A|B) \) so that \(P(B|B) = 1 \), \(P(A \cap B) \) should be re-scaled by dividing by \(P(B) \).

This results in Formula \[4.3.1\] whenever \(P(B) > 0 \). If \(P(B) = 0 \), conditional probability is not defined.

Visualization An easy way to visualize conditional probabilities is as relative areas in Venn diagrams: The area of each circle represent the probability of the event in question. \(P(A|B) \) represents the percentage of the area of \(B \) that is occupied by \(A \). As indicated in Figure \[4.6\] if the sample space is restricted to \(B \), \(P(B) = 1 \), the area of circle \(B \) amounts to 1. In this case, \(A \cap B \) is the probability of \(A \) is occurring provided \(B \).

Kolmogorov axioms and conditional probability This approach results in a probability measure that is consistent with the original probability measure and satisfies all the Kolmogorov Axioms.

(i) \(0 \leq P(A|B) \leq 1 \)

- \(P(A|B) = 0 \), if \(A \cap B = \emptyset \);
4. ENCODING DICTIONARIES AND CONDITIONAL PROBABILITY

![Diagram]

Figure 4.6: $P(A|B)$ if $P(B) = 1$

- $P(A|B) = 1$, if $A \supseteq B$;

(ii) Any countable sequence of mutually exclusive events $A_1, A_2, ...$ and a conditioning event B satisfies:

$$P(A_1 \cup A_2 \cup \cdots \cup A_n | B) = \sum_{i=1}^{n} P(A_i | B).$$

4.3.2 Conditional probability as translation relation

Recall that according to our expectations translation relation should be
\textit{gradual, quantifiable, asymmetric} and should be \textit{automatically attainable}. From an other perspective, translation relation is expected to measure \textit{translational insertibility} and \textit{explanatory power}. In our point of view, conditional probability easily lends itself to measure translation relation.

\textbf{Gradual, quantifiable} As $0 \leq P(A|B) \leq 1$, these properties obviously hold.

\textbf{Asymmetry} Conditional probability is asymmetric, that is, $P(A|B) \neq P(B|A)$,

\[P(A|B) = \frac{P(A \cap B)}{P(B)}, \text{ while } P(B|A) = \frac{P(A \cap B)}{P(A)}. \]

\textbf{Automatically attainable} In Chapter 5 we will investigate to what extent conditional probability can be attained automatically for the present task.

\textbf{Translational insertibility} Conditional probability is estimated through actual translational insertions present in the parallel corpus (cf 4.3.3). If the parallel corpus is representative, actual translational insertions are informative of translational insertibility.
4.3 Conditional Probability and Translation Relation

However, accidental gaps surely occur in every parallel corpus, since the corpus cannot contain all the grammatical variations of word forms, therefore, many possible translational insertions does not occur. Consequently, accidental and necessary gaps in actual translational insertions cannot be told apart in this framework. Thus, the measure of conditional probability should be complemented somehow to give a better estimation of translational insertibility. This is part of our future task.

Translational and cognitive equivalency Actual translational insertions may be also used to find out where each translation is situated on the translational equivalent—cognitive equivalent continuum. Recall the definition: Two words were said to be cognitive equivalents if they were interchangeable in every possible contexts. That is, in a perfect cognitive equivalency the frequency of the source word equals to that of the target word and $P(A|B) = \frac{P(A \cap B)}{P(B)} = 1$, i.e. the corresponding circles are completely overlapping. Figure 4.7 depicts a translation pair that is made up of ”almost” cognitive equivalents.

![Figure 4.7: A and B are “almost” cognitive equivalents](image)

Explanatory power Although it has not been investigated in the present research, explanatory power may be measured through giving an estimation to the semantic relatedness of the translation candidates. Explanatory power may be defined in terms of the semantically closely related translation alternatives. Semantic relatedness may be measured on the basis of the set of contexts the translation candidates share (cf. Harris distributional hypothesis). This research direction could help to give a better estimation to translational insertibility, too.

Conditional probability as translation relation If so, how conditional probability should be interpreted to serve as a measure of translation relation? Let Ω
be the sample space. That is, \(\Omega = X \times Y = \{(x,y) \mid x \in X \land y \in Y\} \), where \(X = \{SL \text{ word forms}\} \) and \(Y = \{TL \text{ word forms}\} \). As there is no corpus that could contain all the word forms of a language, the parallel corpus yields only a more or less appropriate approximation to \(\Omega \).

Let the possible translations of \(b \) be \(a_1, a_2, ..., a_k \). Therefore, \(B, A_k \subseteq \Omega \), so that \(B = \{(b,y) \mid b \in X \land y \in Y\} \) and \(A_k = \{(x,a_k) \mid x \in X \land a_k \in Y\} \).

It is important to emphasize that as opposed to what we have asserted so far, \(B \) and \(A_k \) are mappings between pure word forms without meaning, thus in this case, we seek to map occurrences of word forms onto each other, instead of linking LUs. Note that in the discussion what follows, the notation is changed: \(A \) and \(B \) will denote mappings between the SL and TL vocabularies, instead denoting the SL and TL vocabularies.

Example As Figure 4.8 indicates, the Hungarian word form \(\acute{a}mb\acute{a}r \) is translated as *though* and *albeit* while the English word form *though* is translated as *b\'{a}r* and *\'{a}mb\'{a}r*. The area of each of the circles represents the frequency of the corresponding word form. Thus, for instance *though* occurs slightly more often in the parallel corpus as *b\'{a}r* and *though* occurs much more frequently than *albeit*.

![Figure 4.8: Venn diagram of the translations of ámbár](image)

Relying on conditional probabilities makes it possible to disregard the actual frequencies of the word forms: When searching for the possible translations of \(\acute{a}mb\acute{a}r \), we presume that the occurrences of this word make up the complete sample space, thus \(P(\acute{a}mb\acute{a}r) = 1 \). Therefore, the possible translations of \(\acute{a}mb\acute{a}r \) divide this sample space: The likelihood of the translations is depicted by the intersection of the correspond-
ing sets (ámbár \(\cap\) though is smaller than though \(\cap\) bár), regardless of the area of the corresponding circles. Using conditional probability as the translation relation yields an additional advantage: Although ámbár and though appear—at least partially—in the same set of sentences they are each other’s translations. However as Figure 4.8 indicates this translation relation is not symmetric. Ámbár is more often translated as though as vice versa. Though has many others translations one of them is bár.

Let us suppose that we are seeking the possible translations of though. In that case the sample space is re-defined: It is constrained to the occurrences of though.

Parallel corpus, word alignment and dictionary extraction Now we are seeking the translations of an SL word \(b\). That is, we want to determine the probability of each ordered pair \((b, a_k)\). To put it differently, the value of \(P(A_k|B)\) should be assessed. For that purpose, the actual frequencies of word alignment links in the parallel corpus have to be relied on.

Let us introduce some additional notational conventions: Let \(b_i\) denote the \(i\)th occurrence of \(b\) in the SL part of the parallel corpus, where \(b\) is a type in the SL vocabulary. Similarly, let \(a_{kj}\) stand for the \(j\)th occurrence of \(a_k\) in the TL part of the parallel corpus, where \(a_k\) is a type in the TL vocabulary.

A parallel corpus is a set of translated texts made up of aligned or parallel sentences. During the process of word alignment alignment links between the relevant SL and TL words should be found within the scope of the aligned sentences.

4.3.3 Calculating \(P(A_k|B)\) based on the parallel corpus

In the present section our primary aim is to give a basic intuition on how conditional probability may serve as translation relation and how it may be calculated on the basis
4. ENCODING DICTIONARIES AND CONDITIONAL PROBABILITY

of parallel data. Though unrealistic, for the sake of simplicity we will introduce some simplifying assumptions that help us to form a picture on how conditional probability may be calculated in the presence of a parallel corpus.

(1) **Word alignment is present in the parallel corpus** Let us suppose that the word alignment links are given beforehand, that is, the exact mapping between b_is and a_{kj}s is readily available.

(2) **Equally likely outcomes** Let us suppose that all the possible outcomes – $(x, y) \in \Omega$ – are equally likely. If it was true, (1) each target word is equally likely to be the translation of a given source word and (2) all the alignments were equally likely.

(3) **Finite number of possible outcomes** As the number of word types both in the SL and TL corpus is finite, the set of possible outcomes is also finite: $|X| \times |Y|$. From (2) and (3) it follows that the probability of a given translation pair (x, y) can be modeled by a discrete uniform distribution.

(4) **Every SL word must be associated to exactly one TL word** Let b_i be a specific occurrence of b and a_{kj} a specific occurrence of a_k. Every b_i is assigned a specific translation a_{kj}. So that

(i) At least one a_{kj} is assigned to every b_i.

(ii) No b_i is assigned two or more different a_ks.

In the presence of assumptions (1), (2) and (3) we can use the following equation to calculate $P(E) = P(A_k|B)$:

$$P(E) = \frac{\text{number of desirable outcomes}}{\text{number of all possible outcomes}} \quad (4.3.2)$$

Example Figure [1.10] represents a parallel corpus and the corresponding alignment links. In the present example we calculate the probability that b (the Hungarian SL word *nagy*) is translated as a_k (into any of the English words: *large*, *profound* and *serious*) based on the given word alignment wa. For the sake of simplicity let us suppose that there is a one-to-one mapping between the SL and TL words. This equals to adding an extra condition:

1Note that the actual sentence boundaries are of no importance here.
(1) No a_{kj} is assigned two or more different b_{is}.

As we are interested only in the translations of b, the sample space is constrained to B. Therefore $P(B) = 1$.

Recall, that $B = \{(b, y) \mid b \in X \land y \in Y\}$ and $A_k = \{(x, a_k) \mid x \in X \land a_k \in Y\}$. Thus,

$$A_1 \cap B = (b, a_1) \text{ and } A_2 \cap B = (b, a_2) \text{ and } A_3 \cap B = (b, a_3) \quad (4.3.3)$$

The probabilities of these events are estimated based on the word alignment wa in the parallel corpus. As word alignment wa is given and the sample space is constrained to B, $(X, Y)_{wa, B}$ random variable takes the following values:

$$(X, Y)_{wa, B} = \{(b_1, a_{11}); (b_2, a_{12}); (b_3, a_{13}); (b_4, a_{14}); (b_5, a_{21}); (b_6, a_{22}); (b_7, a_{31}); (b_8, a_{32})\} \quad (4.3.4)$$

$$(X, Y)_{wa, A_1 \cap B} = \{(b_1, a_{11}); (b_2, a_{12}); (b_3, a_{13}); (b_4, a_{14})\} \quad (4.3.5)$$

$$(X, Y)_{wa, A_2 \cap B} = \{(b_5, a_{21}); (b_6, a_{22})\} \quad (4.3.6)$$

\[1\]This condition is not necessary for creating a partition over B.\[1\]
4. ENCODING DICTIONARIES AND CONDITIONAL PROBABILITY

\[(X, Y)_{wa}, A_5 \cap B = \{(b_7, a_{31}); (b_8, a_{32})\}\]

As \(P(B) = 1\), in accordance with 4.3.2,

\[P(A_1 | B) = P(A_1 \cap B) = \frac{4}{8} = 0.5\]

\[P(A_2 | B) = P(A_2 \cap B) = \frac{2}{8} = 0.25\]

\[P(A_3 | B) = P(A_3 \cap B) = \frac{2}{8} = 0.25\]

4.3.4 Partition over the SL word form

Recall that in Section 4.2.2 we have drawn the conclusion that either the SL sense-inventory should exhibit certain properties to be suitable to serve as a basis for an ideal encoding dictionary. Accordingly, each headword should be semantically characterized in a way that each occurrence of the given headword\(^1\) can be uniquely assigned to any of the meanings belonging to the headword. An other alternative was also discussed: Namely, disregarding word senses and trying to retrieve translations by creating a partition of TL word forms over the SL word form directly. In this section we discuss the second option in more detail.

Partition over set B To put it more precisely, a partition of a set \(B\) is a collection of mutually exclusive subsets \(A_k \subseteq B\) so that every element \(b \in B\) occurs in exactly one of the \(A_k\)s. This equals to the following conditions:

1. The intersection of any two distinct sets in the collection of sets \(A\) is empty.
2. \(\cup_{k=1}^l A_k = B\): The union of sets in the collection of sets \(A\) are said to cover \(B\).
 (i) That is, there is no \(b \in B\) so that \(b \notin A_k\), where \(1 \leq k \leq l\).
 (ii) And conversely, there is no \(a \in A_k\), where \(1 \leq k \leq l\), so that \(a \notin B\).
3. If \(b \in A_k\) and \(b \in A_j\), then \(k = j\), that is, \(b\) is assigned to no more than one \(A_k\).

\(^1\)If the context is not underspecified
Partition over the occurrences of source word \(b \)

Just as in Example 4.10, the occurrences of the source word \(b \) are represented by \(b_1, b_2, ..., b_n \). The given word alignment is denoted by \(wa \). \(a_{kj} \) refers to the \(j \)th occurrence of \(a_k \). Accordingly, given the specific \(wa \) alignment in Example 4.10, \(O_a = \{ a_{11}, a_{12}, ..., a_{1j}; a_{21}, a_{22}, ..., a_{2m}; ...; a_{k1}, a_{k2}, ..., a_{km} \} \) occurrences of the TL word forms creating a partition over the \(O_b = \{ b_1, b_2, ..., b_n \} \) set made up of the occurrences of the SL word \(b \).

\(B \) and \(A_k \) should be re-defined in this case:

\[
B = \{ (b_i, a_{kj}) \mid b \in X : SL \ vocabulary \land a_k \in Y : TL \ vocabulary \}, \text{ where } 0 \leq i \leq n; 0 \leq k \leq l \text{ and } 0 \leq j \leq m.
\]

\[
A_k = \{ (b_i, a_{kj}) \mid b \in X : SL \ vocabulary \land a_k \in Y : TL \ vocabulary \}, \text{ where } 0 \leq i \leq n \text{ and } 0 \leq j \leq m, \text{ thus, } A_k \subseteq B.
\]

(1) \(A_1, A_2, ..., A_k \) are pairwise disjunct events, as \(a_1, a_2, ..., a_k \) are different word forms.

(2) \(\cup_{k=1}^{l} A_k = B \): The union of sets in the collection of sets \(A \) are said to cover \(B \).

(i) That is, there is no \((b_i, a_{kj}) \in B \) so that \((b_i, a_{kj}) \notin A_k \), where \(1 \leq k \leq l \).

(MiértXXX) \((A_1 \cap B) \cup (A_2 \cap B) \cup ... \cup (A_k \cap B) = B \). And conversely,

(ii) There is no \((b_i, a_{kj}) \in A_k \), where \(1 \leq k \leq l \), so that \((b_i, a_{kj}) \notin B \). This follows from (4/i), namely at least one \(a_{kj} \) is assigned to every \(b_i \). XXXand the sample space is constrained to BXXXX

(3) If \((b_i, a_k) \in A_k \) and \((b_i, a_j) \in A_j \), then \(k = j \), that is, \(b_i \) is assigned to no more than one \(A_k \). The specific word alignment \(wa \) guarantees that no \(b_i \)s is assigned two different \(a_{ks} \). In fact, the criterion of one-to-one mapping is too strong: relying only on assumption (4/ii) would suffice.

Example

Figure 4.11a represents the partition created on the basis of the parallel corpus in Figure 4.10. Let us investigate the occurrences of the Hungarian word ámbár. As Figure 4.11b indicates ámbár has three different English translations: though, although and albeit. The partition clearly indicates the most frequently used alternative.

Translational insertions and semantic relatedness

Although these translations are near-equivalents and thus might show up in a variety of the same contexts, in the texts they are never aligned to the very same SL word at the same time. Thus, this approach gives a model of translational insertibility based on actual translation insertions. However, it is not able to predict whether the TL words are interchangeable in
4. ENCODING DICTIONARIES AND CONDITIONAL PROBABILITY

(a) Partition over B

(b) Partition over ámbár

certain contexts. Thus, the proposed technique gives certain information on translational insertibility, but more research is needed to be able to tell apart necessary and accidental gaps.

In Sections 4.3.3 and 4.3.4 we presented how conditional probability of each translation can be calculated in the presence of certain assumptions. We have also claimed that since the occurrence of different TL words as translations of a give SL word are mutually exclusive events, conditional probabilities create a partition over the occurrences of the source word form if certain assumptions hold, thus word alignment on parallel corpus may serve as an ideal basis for encoding dictionaries. In the next section the validity of these assumptions will be examined.

4.3.5 Presuppositions revisited—complicating the picture

This section focuses on the presumptions stipulated in the previous section. Unfortunately, most of them are excessively oversimplifying, thus not reflecting the basic properties of translated texts. Although many of the suppositions do not hold, the picture that has been formulated so far gives us a clear impression of what we are expecting from an ideal algorithm. In what follows, we will focus on to what extent the stipulated presuppositions hold with regard to the investigated phenomena—translated texts—and with regard to the algorithm which automatically attains conditional probabilities on the basis of parallel corpus. Unfortunately, word alignment on parallel corpora is not perfectly suitable to create a partition over a given SL word, but gives an estimation to it.

Word alignment links are more intricate The mapping properties stipulated in
4.3 Conditional Probability and Translation Relation

(4) do not necessarily hold in translated texts for multiple reasons resulting in one-to-zero, zero-to-one, many-to-one or one-to-many alignments, any of which may “distort the partition”.

Translational divergencies The fact that the TL text is translation that has to be maximally coherent in itself may lead to more complex mappings during word alignment. Here we confine ourselves to mention some of these phenomena, such as a pro drop language in either side of the parallel corpus or referring by anaphors.

Morphological divergencies Various languages widely differ with regard to their morphological properties, compounds, multi-word syntactic structures expressed with a single word resulting in a many-to-one alignment.

Possible outcomes are not equally likely Since the appearance of the TL words is not independent of the words in the SL corpus, the possible outcomes are not equally likely. Therefore, translation probabilities cannot be calculated as given in Formula 4.3.2.

Word alignment links are not readily available in the parallel corpus Recall that we presupposed that the alignment links were present in the parallel corpus (cf. Figure 4.10). Unfortunately, a parallel corpus comprises only aligned sentences but lacks word alignment. Moreover, to be able to align the words in sentences we need to know “how often” an SL word is translated as a given TL word, that is, how the translation space of each B of the SL is divided. On top of that, to calculate the frequency of each translation pair, we need the word alignment. This is exactly what Tiedemann calls a chicken and egg problem, which will be addressed in Chapter 5. It seems to be a chicken and egg problem, which will be addressed in the next chapter. The corresponding algorithm is described in Section 5.3.2 in more detail. Most csak azt bocsátjuk előre, hogy az algoritmus: (XXXXonly estimation, hill climbing, local maximum, instead of global maximum, deficient: nem szummáz egyre. Igen, de mi?)

4.3.6 Relation to corpus data

Reliance on intuition As word alignment on parallel corpus is an unsupervised technique, it seems to avoid the intuition related difficulties discussed in Sections 2.3.1.

\[\text{http://stp.lingfil.uu.se/~joerg/mt09/f5_SMTintro-2x2.pdf}\]

111
Nevertheless, as we will see in Chapter 6, intuition comes into play again when fine-tuning the parameters and evaluating the results.

Contexts Instead of intuition context should play a great role when characterizing meanings both in the TL and in the SL. In the proposed approach contexts might be exploited in multiple ways. First, contexts are inherently taken into account when the automatically generated dictionary is produced throughout word alignment. Secondly, the contexts in which a translation pair may appear help to characterize the sub-meanings (cf. Table 4.1). Third, based on the supplied contexts automatic extraction of multiword items is also possible (for further details see Chapter 7). Moreover, relevant example sentences, in which the translation pair in question appears are also provided, thus giving additional hints on the use of the target expression. Which in turn, is particularly useful for encoding purposes.

4.3.7 Economical considerations

Corpus-driven methodology Since the basic objective is to find a method that is able to facilitate the production of bilingual dictionaries for lesser-used languages, the available financial assistance is rather poor. Consequently, producing hand-crafted databases and thus corpus-based lexicography is not a feasible approach. Hence, a methodology is searched for that is capable of eliminating human contribution as much as possible: Corpus-driven techniques, especially unsupervised learning algorithms are particularly apt for our purposes. As word alignment works on parallel corpora tagged only with a minimal linguistic mark-up, it does not require profound lexicographic work.

Language-independent The proposed method should be language independent, thus easily re-applicable. Word alignment partially meets this requirement. Obviously, the relevant parallel corpora have to be compiled. As word alignment works best on a stemmed parallel corpus—especially in the case of highly inflective languages—a minimal language dependent annotation is needed (cf. Chapter 6). But once the minimal linguistic annotation is provided the whole workflow could be considered language-independent.

Easily reversible In order to be economical the resulting dictionary should be easily reversible. This presumes that the vocabulary of the TL-side of the dictionary is representative, too. Being generated from parallel texts, the SL and TL vocabularies
are largely alike. On the other hand, conditional probability is asymmetric, thus it is
able to reflect the differences arising from switching the TL and the SL.

Moreover, we would like to come up with a solution to the problem raised
by Adamska-Salaciak \(^\text{[1]}\). Unfortunately, a bilingual dictionary could never give all
type of translation equivalents of a given SL item, because it is impossible to predict
all the contexts in which the item can occur. This problem should be eliminated.
Actually, all contexts are given in which an item actually occurs, innentől korpusz
representativeness kérdése.

4.4 Difficulties

Beside the essential improvements the proposed method contributes to bilingual lexi-
cography, there are certain difficulties that should be overcome to produce full-fledged
proto-dictionaries of a suitable size.

Corpus size As will be described in Section \([6.2.1]\) in more detail, the main bottleneck
of the method is the scarcity of parallel texts available for medium-density languages,
due to which the production of an appropriate-size parallel corpus proved to be rather
tedious. Hopefully, with the increasing number of texts accessible in electronic format
this task will become much more straightforward in the future.

Fortunately, this shortcoming might be at least partially compensated by a flexible
selection method of the automatically generated translation candidates. The method
selects subsets of translation pairs of different sizes through setting certain parameters.
Therefore, a dictionary query system was designed and implemented which makes
possible to determine the scope of translation candidates to be included in the proto-
dictionary. The dictionary query system will be described in Chapter \([8]\) in more detail.

Multiword expressions The proposed method is not capable of handling any kind of
multiword expressions (idioms, names, collocations and verbal constructions) in itself.
Based on the provided parallel sentences manual lexicographic work is able to compen-
sate for this shortcoming. An other possibility is to include the automatic detection of
multiword expressions in the workflow. This thread of research will be elaborated in
Chapter \([7]\).

Different sub-senses of a headword As it was noted in the previous section \([4.3.4]\),
the proposed method creates a partition over the SL word form based on the alignment
4. ENCODING DICTIONARIES AND CONDITIONAL PROBABILITY

links of different TL word forms. Thus, the SL word form is partitioned by various TL word forms. That is, the technique is not able to differentiate between the senses and subsenses neither of the SL word nor between those of the TL word. The proposed technique only allows for the automatic identification of word senses of SL expressions if different translations are accessible in the TL corpus.

However, as ample empirical data is also supplied, various senses and sub-senses can be characterized manually based on the retrieved contexts. Accordingly, dictionaries relying on such information can provide positive evidence for the user that all of these sub-senses are translated with the same lemma into the target language. As in Example 4.1, manual different sub-senses of the Hungarian and Lithuanian counterparts of to be born are told apart manually.

Hence, in certain situations the various meanings of words cannot be attained automatically, even in the case of completely unrelated senses (e.g. the German counterpart of the English word nail is der Nagel, regardless if it denotes the bodypart or the thin pointed peace of metal). Nevertheless, ignoring such cases does not pose a problem for bilingual dictionaries, since several such dictionaries follow the same practice. (e.g. Collins-Robert French Dictionary (Atkins [5])).

4.5 Conclusions

The present chapter is made up of two main parts. In the first part we have investigated the properties that an SL-sense inventory has to exhibit to be a suitable basis for a high-quality encoding dictionary. In accordance with the view of Mel’čuk, namely, that encoding dictionaries are more intricate to produce and may be easily used for decoding purposes, our basic objective is to find a method that is able to facilitate the automatic generation of encoding dictionaries.

Hypothesis We have started out of the hypothesis that it is impossible to find the translation of an SL LU that best fits the SL contexts, if the SL LU itself cannot be uniquely assigned the right meaning in the SL context. Unique assignment means that each annotator selects the same meaning for the same target word in context. This task is called word sense disambiguation. Therefore, if unique assignment is possible, it is possible to achieve high agreement among human annotators, i.e. high inter-annotator agreement.
4.5 Conclusions

| Lemma_s | Lemma_t | $p(w_t|w_s)$ | $Freq_s$ | $Freq_t$ |
|---------|---------|-------------|---------|---------|
| Születik | Ginti(-sta,-ė) | 0.579 | 169 | 174 |

HU: ő 1870-ben született.
LT: Jis gimė 1870 metais.
EN: He was born in 1870.

HU: De Fache mintha erre született volna.
LT: Bet Fasas, regis, tiesiog tam gimės.
EN: As if Fas were born to do this.

HU: Úgy látszik, szerencséltlen csillagzat alatt születtél.
LT: Turbūt gimei po nelaiminga žvaigžde.
EN: It seems that you were born under an unlucky star.

HU: ..., mert ikrei születtek.
LT: ..., nė jai gimė dvynukai.
EN: ..., because twins were born to her.

HU: Maga ūriembernek született.
LT: Tu gimei džentlemanu.
EN: You were born a gentleman.

HU: ..., hogy Buddha nem lótuszvirágból született?
LT: ..., kad Buda gimė ne iš lotoso žiedo?
EN: ..., that Budha was born from a lotus flower.

| Table 4.1: Sample entry of the automatically generated Hungarian-Lithuanian proto-dictionary – to be born |

Experiments Four experiments were described to investigate to what extent each of the investigated sense-inventories is suitable for word-sense disambiguation tasks. The alternative meanings were listed in traditional sense-inventories. In the first, second and third experiment inter-annotator agreement was considered to measure the quality of word sense disambiguation, while in the fourth experiment the output of automatically extracted disambiguation rules were compared against manual annotation of senses in a certain test corpus. Ideally, the provided contexts should be fully specified so that the missing information does not impede the selection of the right meaning. Although underspecified contexts cannot be completely ruled out, the ’I don’t know’, ’None’ answers and the possibility of making multiple choices may cover such cases.
4. ENCODING DICTIONARIES AND CONDITIONAL PROBABILITY

Results Each of the experiments has yielded rather similar results: On the basis of the provided sense-inventories the word sense disambiguation proved to be a difficult task even for human annotators. This in turn calls into question the reliability of the sense-inventories used as a basis for bilingual encoding dictionaries. How could such sense-inventories serve as basis of bilingual encoding dictionaries, if not even the meaning of the SL expression is clear enough to be assigned to a certain occurrence in context with high inter-annotator agreement?

Main characteristics of SL sense-inventories Given the results of the word sense disambiguation experiments the following conclusions can be drawn: First, a sense-inventory should consist of ample explicit contextual information, which can be relied on when selecting the best sense for the given context. Moreover, ideally, senses should be divided in a way that facilitates the unique assignment of word occurrences to a specific meaning. Such a division is called partition in set theory.

(1) Each SL headword should be characterized in a way that each occurrence of that headword could be clearly assigned to a unique meaning. That is, there is no such occurrence that may be assigned to two different meanings.

(2) It is also presupposed that meanings are non-overlapping entities.

Producing partition of meanings over word occurrences One possible approach is described in Section 2.3.3.3. The objective of the experiment described there was the unsupervised detection of synonymy classes of adjectives on the basis of a monolingual corpus. The investigated technique characterizes the senses and subsenses of the SL word in a way that they create a partition of meanings over the occurrences of the SL word, for example by means of contextual anchors or near-synonyms. In this case meaning may be conceived of as labels on partitions over SL word occurrences. Labels are composed of near-synonyms and contexts. To produce an encoding dictionary these senses should be translated so that they fit into the possible target sentences. Unfortunately, as this thread of research is in the first stage, a suitable database is not available at present.

Corpus-based methods and cost-efficiency Since corpus-based monolingual dictionaries are compiled on the basis of great amount of language data they might be suitable to serve as the starting point for high-quality encoding dictionaries. However, the production of hand-crafted SL sense-inventories requiring so much effort that is usually not available in the case of lesser used languages. Therefore, instead of exploiting
neatly characterized SL sense-inventories another alternative should be considered.

The dictionary extraction method The second part of this chapter focuses on the automatic estimation of conditional probabilities on the basis of word alignment in parallel corpora. This unsupervised technique assigns translational probabilities to SL and TL word pairs. Translational probabilities are automatically determined on the basis of word alignment in the parallel corpus. In fact, translation probability is defined in terms of conditional probability, where the conditioning event is made up of the SL word occurrences.

Expectations toward the proposed method We have also examined whether or not word alignment on parallel corpora satisfies the requirements put forward in the previous chapters. In Chapter 2 various sense-inventories were investigated primarily with regard to their relation to corpus data, yielding the conclusion that a reversible, language independent and data-driven approach is ideal for our purposes, which is able to facilitate the creation of bilingual dictionaries in a cost-effective way. The proposed method correspond to these requirements.

In Chapter 3 the main properties of the ideal translational relation were elaborated. Accordingly, the translation relation should be:

Gradual, quantifiable and asymmetric These properties trivially hold for conditional probability.

Should be able to account for translational insertibility As conditional probabilities are estimated on the basis of actual translations, that is, actual translational insertions, conditional probability gives an estimation of translational insertibility. However, accidental gaps surely occur, since the corpus can not contain all the grammatical variations of word forms, therefore, many possible translational insertions does not occur. Consequently, accidental and necessary gaps in actual translational insertions cannot be told apart in this framework. Thus, the measure of conditional probability should be complemented somehow to give a better estimation of translational insertibility. This is part of our future task.

Should be able to account for cognitive equivalency Cognitive equivalents are SL and TL words that are interchangeable in every possible contexts. The automatically determined conditional probability along with the corresponding frequencies serve as estimates where the given translation pair is situated on the
4. ENCODING DICTIONARIES AND CONDITIONAL PROBABILITY

cognitive equivalence—translational equivalence continuum.

Should be able to account for explanatory power Although it has not been investigated in the present research, explanatory power may be measured through giving an estimation to the semantic relatedness of the translation candidates. Explanatory power may be defined in terms of the semantically closely related translation alternatives. Semantic relatedness may be measured on the basis of the set of contexts the translation candidates share (cf. Harris distributional hypothesis). This research direction could help to give a better estimation to translational insertibility, too.

Should create a partition over the SL form It was also shown that the occurrences of the translation candidates create a partition over the SL word form provided that certain presupposition hold. Although some of the assumptions is not true, it is a good intuitive way to conceive the algorithms as if it created a partition over the occurrences of the SL word form. This entails the fact that the method ranks the translation candidates according to how likely they are, based on automatically determined translational probabilities. This in turn renders it possible to determine which translation of a given lemma is the most frequently used.

Automatically attainable An additional strength of the proposed method that the translation candidates are retrieved completely automatically.

All the relevant natural contexts can be provided both for the source and for the target language. The contexts of the source language and the target language words could be exploited for multiple purposes.

They can be of great help in determining which translation variants should be used, thus enabling lexicographers to find the most appropriate translation on the one hand, and to describe the use of the target language expression in grammatical or collocational terms, on the other. Hence, the great amount of easily accessible natural contexts facilitates the creation of encoding dictionaries.

Different sub-senses of a headword can be characterized manually based on the retrieved contexts. Accordingly, dictionaries relying on such information can provide positive evidence for the user that all of these sub-senses are translated with the same lemma into the target language.

In Chapter 5 the most widely used word alignment algorithms will be introduced, which
can be classified into two main categories: association approaches (5.3.1) and estimation approaches (5.3.2). Section 5.3.4 describes the main advantages and backdraws of these techniques.
4. ENCODING DICTIONARIES AND CONDITIONAL PROBABILITY
5

Selecting the Alignment Techniques

5.1 Introduction

Word alignment methods enable the unsupervised learning of word pairs from sentence-aligned corpora. As stated above, one of the main advantages of using word alignment for the purpose of dictionary creation is that it helps to eliminate human intuition during dictionary building. Moreover, it exploits parallel corpora, that is, as opposed to other techniques it does not presume the existence of refined resources (e.g. monolingual explanatory dictionaries, sense-inventories characterized on the basis of monolingual corpora, wordnets).

Word alignment aims at finding alignment links between words in a parallel corpus. Bilingual lexicon extraction goes further: its goal is to identify the lexical word type links based on alignment between word tokens. Thus, dictionary extraction might be decomposed into three basic steps:

(Manning & Schütze (60) pXXX):

(1) The text/sentence alignment of the parallel corpus.

(2) The text/sentence alignment is extended to word alignment.

(3) Some criterion is used (e.g. frequency) to select the aligned pairs for which there
is enough evidence to include them in a bilingual dictionary.

Thus, in what follows we shortly describe the most important sentence alignment methods [5.2], then the most widely used dictionary extraction techniques will be presented (??). There are two basic approaches to dictionary extraction on the basis of parallel corpora: Estimation approaches, which aim at estimating the conditional probabilities between SL and TL word pairs, and association approaches that in general measure that how independent the SL word and the TL word are in the parallel sentences. Note that based on the conclusions we have drawn so far we will focus on estimation approaches [5.3.2], but association approaches are also shortly described [5.3.1].

5.2 Sentence Alignment Techniques

As Manning & Schütze [60] puts it:

In the sentence alignment problem one seeks to say that some group of sentences in one language corresponds in content to some group of sentences in the other language, where either group can be empty, so as to allow insertions or deletions. (p. 467)

That is, the problem of sentence alignment cannot be considered a trivial task, as the structure of the target text might be rather different from that of the source text: (sometimes even whole paragraphs) are omitted or inserted yielding 1:0 or 0:1 alignments. Sentences might also appear in reversed order in the target side. (crossing dependencies) making 2:2, 2:3, 3:2 alignments necessary. Sentences might be also merged or split, which necessitates 1:2, 2:1, 1:3, 3:1 alignments. Manning & Schütze [60] suggests that around 90% of alignments are usually of type 1:1.

The task The objective of statistical approaches of sentence alignment is to find the alignment \(A \) with the highest probability given the two parallel texts \(S \) and \(T \):

\[
\operatorname{argmax}_A P(A|S,T) = \operatorname{argmax}_A P(A,S,T) \quad (5.2.1)
\]

Let \(B_1, ..., B_k \) a sequence of aligned beads. If we suppose that the probability of a bead—a set of sentences that is aligned with an other set of sentences—is independent
of the probabilities of other beads depending only on the sentences in the bead, then:

\[P(A, S, T) = \prod_{k=1}^{k} P(B_k) \] (5.2.2)

The question now is how to estimate \(B_k \). For the rest of Section 5.2 let us suppose that we have two parallel texts \(S = (s_1, ..., s_I) \) and \(T = (t_1, ..., t_J) \)

Expectations Considering the fact that our primary objective is to compile dictionaries for any medium density language pairs, the suitable alignment system should meet the following criteria:

1. It must be able to handle as many alignment types as possible, as in the case of less resourced languages the parallel resources turned out to be rather scarce.
2. The alignment algorithm should be robust and fast.
3. The method has to be language independent.
4. It should be able to handle Unicode input.

Sentence aligner Manning & Schütze (60) tell apart length-based methods (eg. Gale & Church (35)) and lexical methods (eg. Kay & Röscheisen (47), Chen (18)). We have decided to use a hybrid sentence aligner hunalign (Varga et al. (94)), which makes use of both length and lexical information. The main advantage of this technique that it is able to detect one-to-many alignments (eg. 1:3 or 3:1) with a high confidence value, the lack of such alignments is an obvious shortcoming of the methods described in Gale & Church (35) and Chen (18). From our perspective, the main problem of the selected method might be that seed dictionaries are not always available in the case of medium density languages. Nevertheless, in the lack of an initial dictionary, the hybrid algorithm falls back to surface identity of words. The seed dictionary will be generated on the basis of this initial sentence alignment. As they put it:

To summarize our results so far, the pure sentence length-based method does as well in the absence of a dictionary as the pure matching-based method does with a large dictionary. Combining the two is ideal, but this route is not available for the many medium density languages for which bilingual dictionaries are not freely available. However, a core dictionary can automatically be created based on the dictionary-free alignment, and
using this bootstrapped dictionary in combination with length-based align-
ment in the second pass is just as good as using a human-built dictionary
for this purpose. In other words, the lack of a high-quality bilingual dic-
tionary is no impediment to aligning the parallel corpus at the sentence
level.

In addition, hunalign is able to deal with UTF-8 encoded input, which makes it par-
ticularly suitable for our purposes.

5.3 Dictionary Extraction Techniques

The dictionary extraction techniques can be classified into two broad categories: As-
sociation approaches and estimation approaches. In what follows, an overview of the
basic properties of both kinds of extraction methods will be given.

5.3.1 Association Approaches

Association approaches are also called heuristic approaches or hypothesis testing ap-
proaches in the literature. As noted by Och & Ney (71) a common idea behind statisti-
cal association measures is to test if two words co-occur significantly more often than it
would be expected if they would co-occur purely by chance. To test the independence
hypothesis they count co-occurrence frequencies in the aligned regions and use some
association measure to determine how independent two words are. The Dice coefficient
or some variants of it are used most frequently.

\[
dice(i, j) = \frac{2C(e_i, f_j)}{C(e_i)C(f_j)}
\]

(5.3.1)

Here, \(C(e, f)\) denotes the co-occurrence count of \(e\) and \(f\) in the parallel training corpus,
while \(C(e)\) and \(C(f)\) refer to the counts of \(e\) and \(f\) in the source and target sentences.
However, according to Och & Ney (71):

...the use of a specific similarity function seems to be completely arbi-
trary. The literature contains a large variety of different scoring functions...
(p. 24)
5.3 Dictionary Extraction Techniques

Varma (95) gives a detailed comparison of various measures and tests of association such as Pointwise Mutual Information, Dice coefficient, Log-likelihood Ratio, Pearson’s Chi-square test, Odds ratio, T-score and Fischer’s Exact Test. Ribeiro et al. (79) consider the performance of 23 similarity measures in a dictionary extraction context.

5.3.2 Estimation Approaches

Word alignment and noisy channel model Estimation approaches to word alignment are inspired by statistical machine translation. Statistical machine translation is an application of the noisy channel model from information theory (Shannon (87)) to the task of machine translation. In what follows, I will give a brief outline of how the noisy channel model can be used for the purpose of word alignment based on Tiedemann (90), Hiemstra (11), Manning & Schütze (60) and Jurafsky & Martin (46). For the sake of clarity let us suppose that we are translating from French into English. That is, in lexicographical terms the source language is French and the target language is English. However, as Jurafsky & Martin (46) asserts:

...applying the noisy channel model to machine translation requires that we think of things backwards [...]. We pretend that the foreign (source language) input F we must translate is a corrupted version of some English (target language) sentence E, and our task is to discover the hidden (target language) sentence E that generated our observation sentence F.

Hence, the usual terminology of statistical machine translation is just the opposite of what is usual in lexicography. As for subsection 5.3.2 we stick ourselves to the terminology of statistical machine translation, but will get back to the more traditional version later on.

When the noisy channel model is applied to the task of machine translation, the source language S and the target language T are considered to be random variables that produce sentences. Translation is modeled as a transmission of a source language sentence s through a noisy channel that transforms it into a t target language sentence. In a noisy channel model the target sentence t is considered to be the observable part of the system and the task of the model is to find the original input string s that has been transmitted through the channel in order to produce t target sentence. Therefore, our goal is to determine the most probable source language \hat{s}, given t target language...
5. SELECTING THE ALIGNMENT TECHNIQUES

sentence:

\[\hat{s} = \text{argmax}_s P(s|t) = \text{argmax}_s \frac{P(t|s)P(s)}{P(t)} \]

(5.3.2)

Because \(P(t) \) is independent of \(s \) and, therefore, is constant for all possible source language sentences, \(P(t) \) might be omitted from the equation. So, the basic equation is as follows:

\[\hat{s} = \text{argmax}_s P(t|s)P(s) \]

(5.3.3)

Language model In equation 5.3.4 the probability \(P(s) \) is the prior probability or the language model. It expresses the probability that the translator will translate the source language sentence \(s \). As Jurafsky & Martin (46) points out, language model might be conceived as a measure of fluency, that is, it measures how often a given sentence shows up in a monolingual text. Both distributions \(P(s) \) and \(P(t|s) \) are enormously complex. The next step is to define models for these probability distributions.

One important property of estimation approaches is how \(P(s) \) is modeled. A possible solution is to presume that words are independent in the sentences and estimate \(P(s) \) as the product of the probability of each word in the sentence. That is, assuming that \(s \) sentence consists of \(l \) words, \(s_1, s_2, \ldots, s_l \),

\[P(s) = P(s_1) \cdot P(s_2) \cdot \ldots \cdot P(s_l) \]

(5.3.4)

might be a good estimation. The parameters of these models are then estimated based on a monolingual corpus. In this case the model ignores any sequence and position information, thus, this is a zero-order model.

Translation model In equation 5.3.4 the distribution \(P(t|s) \) – the translation model – can be looked upon as a source language-target language dictionary (one that has information about all possible sentences in the source and the target language), thus it gives a relatively high probability to sentences that are each others translations. As the distribution \(P(t|s) \) is enormously complex in this framework translation model is learnt via statistical alignment models on the basis of equation 5.3.5

\[P(t|s) = \sum A P(t, A|s) \]

(5.3.5)

The word alignments that are learnt from parallel corpora can be used as the starting point to build bilingual dictionaries. Since the objective of this thesis is to investigate whether existing statistical methods can be of great help in the creation of bilingual dictionaries for human use, I do not want to dive into the details of statistical machine
translation. Thus, in what follows I give only a short overview of the main properties of statistical alignment models based on Och & Ney (71).

Statistical alignment models Statistical alignment models make some simplifying assumptions on the nature of possible alignments in order to be able to compute the best alignment between s and t. For instance Model 1, Model 3 and HMM model (Brown et al. (15) equally presumes that each target word comes exactly from one source word. Moreover, Model 1 also presupposes a very unlikely hypothesis, namely, that each alignment is equally possible.

The following table lists some of the important properties of the models implemented in GIZA++, the word alignment tool that was applied in our research (Och & Ney (71) p. 29). The importance of these properties, especially fertility model and model deficiency is given by the fact that these properties may ”spoil” the partition.

<table>
<thead>
<tr>
<th>Model</th>
<th>Alignment model</th>
<th>Fertility model</th>
<th>Deficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>uniform</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Model 2</td>
<td>zero-order</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>HMM</td>
<td>first-order</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Model 3</td>
<td>zero-order</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Model 4</td>
<td>first-order</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Model 5</td>
<td>first-order</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Model 6</td>
<td>first-order</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Table 5.1: Overview of the alignment models

Fertility The fertility-based alignment models contain a probability $p(\phi|e)$ that the target/generating word e is aligned to ϕ words. As Och & Ney (71) put it:

> By including this probability, it is possible to explicitly describe the fact that for instance the german word ”übermorgen” produces four English word *(the day after tomorrow)*. In particular, the fertility $\phi = 0$ is used for prepositions or articles that have no direct counterpart in the other language. (p. 26.)

Deficiency In the case of deficient models the probabilities of all valid alignments do not sum to unity.
5. SELECTING THE ALIGNMENT TECHNIQUES

5.3.3 Estimating the model parameters (The expectation maximization algorithm)

Estimating the model parameters—The expectation maximization (EM) algorithm. We will now briefly describe the EM-algorithm in the basis of Manning & Schütze (60). Recall that what we called a 'chicken and egg problem' in the previous section: Translation probabilities were estimated on the basis of word alignment and word alignment was calculated on the basis of translation probabilities. The EM-algorithm eliminates this problem by starting with a random initialization of translation probabilities $P(w_f|w_e)$, These random translation probabilities are then iteratively updated by maximizing the likelihood function until the process converges at a maximum.

$$Z_{w_f,w_e} = \sum_{(e,f) s.t. w_e \in e, w_f \in f} P(w_f|w_e) \quad (5.3.6)$$

In the E-step we compute the expected number of times we will find w_f in the French sentence, given we have w_e in the English sentence. The M-step re-estimates the translation probabilities from these expectations:

$$P(w_f|w_e) = \frac{z_{w_f,w_e}}{\sum_\nu z_{w_f,\nu}} \quad (5.3.7)$$

where the summation ranges over all pairs of aligned sentences such that the English sentence contains w_e and the French sentence contains w_f. The correctness of the algorithm is proved in Dempster et al. (23). The EM algorithm was firstly introduced to analyze parallel corpora by Brown et al. (14).

Most estimation approaches are the extensions of the IBM models described in Brown et al. (15) such as the algorithm described in (7) or Model 6 described in Och & Ney (71). Och & Ney (71) gives also a detailed comparison of the different IBM models and concludes that alignment models with a first-order dependence and a fertility model yields significantly better results than simple heuristic models and estimation approaches with zero-order dependence. There is also a free software GIZA++ (designed and written by Och) for training purposes.
5.3 Dictionary Extraction Techniques

5.3.4 Pros and Cons

According to Och & Ney (71) the main advantage of heuristic models is their simplicity. They are easy to implement and understand, but the specific similarity function seems to be completely arbitrary. Moreover, their results support that certain kinds of statistical models yield significantly better results than simple heuristic methods. This is probably due to the fact that statistical alignment models are more coherent: The general principle for coming up with an association score between words results from a statistical estimation theory and the parameters of the models are adjusted such that the likelihood of the models on the training corpus is maximized. In the previous chapters it was also argued that conceiving translation relation as conditional probability is a reasonable choice for it meets the expectations put forward by bilingual lexicography toward the ideal translation relation. On top of that, such a conception of translation relation renders it into a quantifiable notion, thus enabling the automatic selection of the best translation candidate.

Tiedemann (90) notes that different alignment strategies might be chosen to suit particular needs. According to him estimation methods should be preferred when coverage also plays a great role, such as machine translation. Since our objective is to find a method that is suitable for the automation of the generation of dictionaries from scratch, coverage plays a great role. Mainly that is why we have decided to work with GIZA++.

In Chapter 6 the construction and evaluation of the Hungarian-Slovenian and Hungarian-Lithuanian core dictionaries will be presented.
5. SELECTING THE ALIGNMENT TECHNIQUES
6 Proof-of-Concept Experiments: One-Token Units

6.1 Introduction

In what follows, the compilation process of proto-dictionaries for two lesser used language pairs will be introduced: for Lithuanian and Hungarian and for Slovenian and Hungarian. Since the creation of reversed dictionaries is rather straightforward using word alignment, four proto-dictionaries were available by the end of the workflow. Additional dictionaries for well-resourced languages were also created to be able to compare the amount of effort needed to compile proto-dictionaries for lesser used and well-resourced language pairs. French-Dutch and English-Hungarian dictionaries were also produced from readily available parallel corpora.

However, as the main topic of the present research is to investigate how language technology methods are able to contribute to the creation of dictionaries for less resourced languages, the present chapter concentrates on Hungarian-Lithuanian and on Hungarian-Slovenian. Accordingly, this chapter discusses two proof-of-concept experiments, yielding the conclusion that although word alignment on parallel corpora seems to be a rather promising approach from several point of view, the collection and normalization of parallel texts is rather tedious. Once the texts are collected and normalized and the tool-chain is set up, the creation of the dictionaries can be completely automatized.
6. PROOF-OF-CONCEPT EXPERIMENTS: ONE-TOKEN UNITS

6.2 Workflow

The workflow comprised three main stages. First, resources and language-specific tools had to be collected to create the parallel corpora (6.2.1). Secondly, word alignment was carried out to generate the proto-dictionaries. Based on the preliminary manual evaluation of the Hungarian-Slovenian proto-dictionary some thresholds were set for some parameters based on which the unlikely translation candidates were filtered out. The same values were also applied in the case of Hungarian and Lithuanian (6.2.2). Finally, a more precise evaluation of the Hungarian-Lithuanian proto-dictionary was carried out manually by bilingual speakers, based on criteria that were also defined in this phase (6.2.3). Figure 6.1 presents a more detailed description of the work that has been accomplished. However, only the phases listed above will be discussed in more detail.

6.2.1 Creation of Parallel Corpora

Collection of texts Since the objective of the project was to create dictionaries for everyday language vocabulary, we decided to focus on the genre fiction while collecting texts for our corpora. One of the main difficulties the project had to face was the scarce availability of general-domain parallel texts. As collecting direct translations yielded only a moderate success we decided to gather texts translated from a third language. Although national digital archives such as the Digital Academy of Literature of Literature (72) and the Hungarian Electronic Library do exist in Hungary providing us with a wealth of electronically available texts, similar resources have not been found, neither for Slovenian nor for Lithuanian. Finally, we obtained sentence segmented and morphologically disambiguated texts from the Lithuanian Centre of Computational Linguistics, Vytautas Magnus University creator of the Lithuanian National Corpus (Rimkutė et al. (80)) and of the Lithuanian-English parallel corpus (Rimkutė et al. (81)).

Collection of tools Basic text-processing tasks (i.e. tokenization, sentence segmentation and lemmatization – with disambiguation) were accomplished by the means of language-specific tools accessible for all these three languages. As for Lithuanian, the analysis was carried out by the Lithuanian Centre of Computational Linguistics (Vytautas Magnus University). Slovenian texts were processed with the tool-chain available at the site of Jožef Stefan Institute (Erjavec et al. (24)). Hungarian annotation was
6.2 Workflow

![Diagram of workflow process]

Figure 6.1: The basic process of proto-dictionary generation

provided by the pos-tagger of the Research Institute for Linguistics, HAS (Oravecz & Dienes (73)).

Creation of parallel corpora Sentence alignment was performed with hunalign Varga et al. (94). The lemmatized versions of the original texts served as input to sentence alignment to eliminate as much as possible the problem of data sparseness resulting from rich morphology.

Since our basic goal is to investigate how proto-dictionaries can facilitate lexicographic process, we sought to minimalize the possible side effects of mismatched sentences. Therefore, corpus texts were manually checked in order to get rid of untranslated sec-
6. PROOF-OF-CONCEPT EXPERIMENTS: ONE-TOKEN UNITS

Afterwards, a sample of the Hungarian-Slovenian parallel corpus was manually evaluated. Based on the result of the evaluation a threshold had been set and all the aligned sentences with a confidence value below this threshold were discarded in the rest of our analysis. As a result, we have produced two parallel corpora of different sizes. Table 6.1 shows the corpus size for each of the language pairs. The second column uses translational units (TUs) as a measure of corpus size instead of sentences. This is due to the fact that translations in parallel texts might merge or split up source language sentences, thus recognizing only one-to-one sentence mappings often entails loss of corpus data. Hunalign is able to overcome this difficulty by creating one-to-many or many-to-one alignments (i.e. 1:2, 1:3, 2:1, 3:1) between sentences.

<table>
<thead>
<tr>
<th>Size of Hungarian-Lithuanian parallel corpus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hungarian</td>
</tr>
<tr>
<td>Lithuanian</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size of Hungarian-Slovenian parallel corpus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hungarian</td>
</tr>
<tr>
<td>Slovenian</td>
</tr>
</tbody>
</table>

Table 6.1: Size of the parallel corpora

6.2.2 Creation of Proto-Dictionaries

The present section describes how the list of translation candidates was generated, and how the most likely translation candidates were selected to produce the proto-dictionaries.

List of translation pair candidates The creation of proto-dictionaries follows two main steps. The first step is word alignment for which the freely available tool GIZA++ (Och & Ney (71)) was used. To perform word alignment GIZA++ assigns translational probabilities to SL and TL lemma pairs. As it was described in Chapter 5 in more detail, the translational probability is an estimation of the conditional probability of the target word given the source word, \(P(W_{target}|W_{source}) \) by means of the EM algorithm. The retrieved lemma pairs with their translational probabilities served as the starting point for the proto-dictionaries.

Additional parameters However, as the assigned translational probability strongly

134
varies, at this stage we had many incorrect translation candidates. Therefore, beside translational probability some additional constraints had to be introduced to find the best translation candidates without the loss of too many correct pairs. Thus, three parameters were considered:

1. Translational probability
2. Source language lemma frequency
3. Target language lemma frequency

Lemma frequencies had to be taken into account for at least two reasons:

1. A minimal amount of data was necessary for the word alignment algorithm to be able to estimate the translational probability.
2. In the case of rarely used TL lemmas the alignment algorithm might assign high translational probabilities to incorrect lemma pairs if the source lemma occurs frequently in the corpus and both members of the lemma pair recurrently show up in aligned units. This phenomenon is illustrated with two examples in Table 6.3 below:

| Hungarian Lemma (SL) | L-Frequency | Lithuanian Lemma | L-Frequency | \(P(w_1|w_2) \) |
|----------------------|-------------|------------------|-------------|----------------|
| arcizom ('muscle in the cheeks') | 5 | jis (he, him, it) | 60667 | 0.8523 |
| ádáž ('grim') | 23 | su (with) | 8562 | 0.7971 |

Table 6.2: Incorrect candidates with high translational probabilities

To filter out such cases an additional constraint was introduced for the Hungarian-Lithuanian language pair: translation candidates where one of the members occurs at least 100 times more than the other were ignored.

First evaluation First, the evaluation of the Hungarian-Slovenian proto-dictionary was carried out. Due to the scarce availability of bilingual speakers for both Lithuanian and Slovenian, the first evaluation round provided the occasion for roughly estimating the settings of the above parameters. Then these parameters were applied to generate the Hungarian-Lithuanian proto-dictionary and a more detailed evaluation was performed on it.
6. PROOF-OF-CONCEPT EXPERIMENTS: ONE-TOKEN UNITS

Parameter setting The evaluation of a sample Hungarian-Slovenian proto-dictionary (5749 lemma pairs) has yielded the following findings:

(1) Source language and target language members of lemma pairs should occur at least 5 times in order to have reliable amount of data when estimating probabilities.

(2) If the translational probability is less than 0.5, the proportion of correct translation pairs drops considerably. 65% of the translation candidates with the corresponding parameters were correct translations. As is described above, in the case of Hungarian-Lithuanian a further constraint was added: we also excluded translation candidates where either the Lithuanian or the Hungarian lemma occurred more than 100 times than the other in the whole parallel corpus.

Number of translation candidates Table 6.3 indicates the number of translation candidates that correspond to the parameters determined through the preliminary evaluation. The second column of the table shows the number of expected correct translations, assuming that 65% of the translation candidates with the corresponding parameters are correct.

<table>
<thead>
<tr>
<th>Language Pair</th>
<th>Number of Translation Candidates above the Threshold</th>
<th>Expected Number of Correct Translations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hungarian-Slovenian</td>
<td>4969</td>
<td>3230</td>
</tr>
<tr>
<td>Hungarian-Lithuanian</td>
<td>4025</td>
<td>2616</td>
</tr>
</tbody>
</table>

Table 6.3: Expected number of correct translations

Considering the fact that we do not intend to create perfect dictionaries, but proto-dictionaries facilitating lexicographers’ work, it seems reasonable to target this value (65%), since it is much easier to throw out incorrect translations than make up new ones. Based on these parameters a detailed manual evaluation of the core Hungarian-Lithuanian dictionary was performed.

Increasing the coverage of the proto-dictionaries Unfortunately, the obtained numbers of expected translation candidates stay far below the targeted size of a medium-sized dictionary (20,000 – 45,000 entries). Hence, the augmentation of parallel corpora and the refinement of parameters will be definitely part of our future work. The latter is motivated by the fact that many translation candidates with higher frequency proved to be correct translational equivalents, even in the presence of translation probabilities which are at least an order of magnitude lower than the value determined above. In
6.2 Workflow

Chapter 8 we will see how fine-tuning the parameters may contribute to the quality of the dictionaries.

6.2.3 Evaluation of the Hungarian-Lithuanian Proto-Dictionary

Useful and useless translation candidates The evaluation was performed manually by bilingual—Lithuanian and Hungarian—speakers. Contrary to the usual evaluation methods, our basic objective was not to tell apart good translations from bad ones, instead, in accordance with our original purpose, we aimed at distinguishing between lexicographically useful and lexicographically useless translation candidates. The eligibility of this classification is clearly verified by the fact that there are completely correct translation pairs that are absolutely of no use for dictionary building purposes (e.g. specific proper names). On the other hand, incorrect translation pairs – in the strict sense – can be of great help for lexicographers, for example in the case of multiword expressions where the contexts provide lexicographers and even end-users with sufficient amount of information to find the right translational equivalents.

In what follows, we will describe the categories used throughout the evaluation, then the methodology of the evaluation and the results will be presented.

Categories The evaluation was based on two main categories: useful and useless translation candidates. Useful translation candidates comprised two subclasses.

(1) Completely correct translation pairs—no post-editing is needed.

Example 1 HUN: gyümölcs LIT: vaisius 'fruit'

(2) Partially correct translation pairs—post-editing is needed.

As opposed to completely correct translations, in the case of partially correct translations, post-editing has to be carried out, primarily due to incorrect lemmatization or partial matches in the case of multiword expressions.

Example 2 and 3 give an instance of partial match due to collocations and compounds. Partially correct translations might also result from slightly loose translations where no strong synonymy holds between the translation candidates. Example 4 illustrates the semantic relation of hyperonymy.
6. PROOF-OF-CONCEPT EXPERIMENTS: ONE-TOKEN UNITS

(a) Compounds:

Example 2 HUN: főfelügyelő LIT: vyriausiasis inspektorius 'chief inspektor'

(b) Collocations:

Example 3 HUN: bőborosi testület LIT: Kardinolų kolegija 'cardinal college'

(c) Slightly loose translations:

Example 4 HUN: lúdtoll (literally: goose-feather) LIT: plunksna (literally: feather, pen) (intended meaning in both cases: quill pen)

Taking into consideration that synonymy in the strict sense is quite rare across languages, members of this class might yield quite useful clues on SL and TL lemmas with related meanings, which can, nevertheless, be substituted in certain contexts.

Evaluation methodology and the results Out of the 4025 translation candidates with the parameters determined above 863 pairs were manually evaluated. Throughout the evaluation three intervals were distinguished based on the value of the translation candidates’ translational probability. The translational probability of 520 candidates was within the range [0.5, 0.7) and 280 candidates’ translational probability lied within [0.7, 1). The proportion of the number of translation candidates within these intervals reflects their actual proportion in our proto-dictionary. All the translation candidates with translational probability 1 (63 pairs) were also included in the evaluation. Table 6.4 indicates the result of the evaluation.

<table>
<thead>
<tr>
<th></th>
<th>Useful Candidates</th>
<th>Useless Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(tr))</td>
<td>OK</td>
<td>Post-editing</td>
</tr>
<tr>
<td>([0.5, 0.7))</td>
<td>52.1%</td>
<td>32.9%</td>
</tr>
<tr>
<td>Sum</td>
<td>(\sum 85%)</td>
<td>(\sum 15%)</td>
</tr>
<tr>
<td>([0.7, 1))</td>
<td>65.3%</td>
<td>31.9%</td>
</tr>
<tr>
<td>Sum</td>
<td>(\sum 97.2%)</td>
<td>(\sum 2.8%)</td>
</tr>
<tr>
<td>1</td>
<td>38%</td>
<td>13%</td>
</tr>
<tr>
<td>Sum</td>
<td>(\sum 51%)</td>
<td>(\sum 49%)</td>
</tr>
</tbody>
</table>

Table 6.4: Results of the Hungarian-Lithuanian proto-dictionary
6.3 Treatment of Multiple Meanings

If we consider the sum of completely correct pairs and lexicographically useful candidates, we can state that 85% of the translation pairs is useful in the probability range between 0.5 and 0.7. This value goes up to 97.2% in the range between 0.7 and 1. Interestingly, translation pairs with the highest probability (1) are only 51% useful, and only 38% correct. This is due to the high proportion of not relevant proper names in this probability range. Based on this evaluation of the sample, we might expect that 3549 translation candidates out of 4025 should be useful, which yields a better coverage than our original hypothesis (Table 6.3).

Coverage Despite the improved results, the coverage of our proto-dictionary has to be further augmented. One possibility is the refinement of the parameter settings, since the translational probabilities assigned to several correct translation-pairs with higher lemma frequencies are at least an order of magnitude lower than the one determined above. This issue will be given a closer look in Chapter 8.

6.3 Treatment of Multiple Meanings

As it was pointed out earlier in Chapter 4, one of the main benefits of the proposed method is that it enables the extraction of all the relevant translations available in the corpora, thus diminishing the role of human intuition during lexicographic process. Furthermore, it ranks the extracted translation candidates on the basis of their translational probabilities. These features imply that the proposed technique copes with related meanings more efficiently than traditional lexicography or lexicography based on monolingual corpora.

In this chapter we present two examples to illustrate the above statements. Atkins & Rundell (7) claim that

\[
\text{there is a strong correlation between a word’s frequency and its [semantic] complexity (p. 61)} \]

Taking this citation as our starting point, we concentrated on cases where Lithuanian lemmas occur at least 100 times in the corpus. In parallel with the augmentation of frequency, we decreased the threshold of translational probability: we set it to 0.02 instead of 0.5. With these parameters we obtained 6500 translation candidates for 1759 Lithuanian lemmas.
6. PROOF-OF-CONCEPT EXPERIMENTS: ONE-TOKEN UNITS

6.3.1 Example 1: **Puikus**

Table 6.5 illustrates that the proposed method is able to extract various translations ranked according their likelihood. The translation candidates below support our hypothesis: in the case of more frequent words, translation candidates even with lower probabilities might yield correct results.

| English translation | Lemmaₜ | Lemmaₜ | p(wₜ|wₛ) |
|---------------------|--------|--------|-----------|
| 'good' | jó | puikus | 0.128 |
| 'great', 'all right'| remek | puikus | 0.071 |
| 'perfect' | tőkéletes | puikus | 0.052 |
| 'nice' | szép | puikus | 0.048 |
| 'splendid' | pompás | puikus | 0.035 |
| 'well' | jól | puikus | 0.035 |
| 'great' | nagyszerű | puikus | 0.035 |
| 'fine' | finom | puikus | 0.028 |
| 'marvelous' | gyönyörű | puikus | 0.02 |

Table 6.5: Example 1: Hungarian equivalents of the Lithuanian word *puikus* sorted by the translational probability.

The order of the translation candidates might be stunning at first sight for someone who speaks Hungarian, for *remek* which turned out to be the second most probable translation of the Lithuanian *puikus*, is stylistically marked when it modifies a noun. However, the provided examples account for this oddity. In one third of the examples *remek* occurs as a one-word response, which form is quite extensively used in Hungarian. (e.g. –Puiku, - atsakė balsas. –Remek – válaszolta a hang. ‘–All right – the voice answered.’)

6.3.2 Example 2: **Aiškiai**

As it was discussed earlier, the proposed technique seems to be particularly apt to support the creation of encoding dictionaries. If multiple translations are present, it is essential that the choice among them be guided by explicit linguistic criteria. The provided parallel data could be of great help for lexicographers in describing the relevant
conditions under which a target language expression could occur. Table 6.6 illustrates the role of the context in finding the right translational equivalent:

<table>
<thead>
<tr>
<th>Expression₁</th>
<th>Expression₂</th>
<th>English gloss</th>
<th>Literal English</th>
</tr>
</thead>
<tbody>
<tr>
<td>aiškiai</td>
<td>tisztán</td>
<td>pure+ly</td>
<td>‘clearly’</td>
</tr>
<tr>
<td>Contexts</td>
<td>PERCEPTION VERBS: lát, látszik, hall</td>
<td>'see', 'seem', 'hear'</td>
<td></td>
</tr>
<tr>
<td>aiškiai</td>
<td>világosan</td>
<td>clear+ly</td>
<td>‘clearly’</td>
</tr>
<tr>
<td>Contexts</td>
<td>PERCEPTION VERBS: lát, látszik, hall</td>
<td>'see', 'seem', 'hear'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COGNITION VERBS: megért, gondolkodik</td>
<td>'understand' 'think'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMMUNICATION VERBS: beszél, válaszol</td>
<td>'speak' 'answer'</td>
<td></td>
</tr>
<tr>
<td>aiškiai</td>
<td>láthatóan</td>
<td>visible+ly</td>
<td>‘visibly’</td>
</tr>
<tr>
<td>Contexts</td>
<td>COMMUNICATION VERBS: beszél, válaszol</td>
<td>'speak' 'answer'</td>
<td></td>
</tr>
<tr>
<td>aiškiai</td>
<td>jól</td>
<td></td>
<td>well</td>
</tr>
<tr>
<td>Contexts</td>
<td>PERCEPTION VERBS: lát, látszik, hall</td>
<td>'see', 'seem', 'hear'</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.6: Example 2

Although due to its size our corpus is not well suited for providing sufficient data for the complete description of these terms, on the basis of the contexts several conclusions can be drawn. First, tisztán, világosan and jól can modify verbs of perception. Láthatóan is clearly distinguishable, as it usually refers to the fact that the emotional change a person underwent was overt. Világosan is also commonly used with verbs of cognition and verbs of communication with the same meaning, i.e. the content of the communication is clearly comprehensible. As opposed to this, with verbs of communication tisztán would mean that the speech conveying the message was clearly pronounced. This kind of information can be of great help for a Lithuanian speaker who wants to make utterances in Hungarian.

6.4 A Uniform Corpus Representation

Motivation As it was described earlier in the present chapter, during the first experiment the parallel corpora was stored in a rather simple format: Sentence-alignment was carried out on the lemmatized versions of the texts. These versions were relatively easy to create and to deal with for the purpose of dictionary extraction of one-token
units. However, it soon turned out that a more structured input format would be more desirable both for technical reasons (1, 2) and to enhance the quality of the resulting proto-dictionaries (3, 4, 5):

(1) Regular expressions are quite difficult to maintain, inconsistencies due to different punctuation conventions over various texts and languages are hard to cope with.

(2) Regarding that are basic objective is to create encoding dictionaries, natural language sentences, in which the translation pairs occur, play an important role in our proto-dictionaries. In the basic version relevant sentences were retrieved from the original texts, which were stored separately. Relying on data stored in XML-format renders this task more straightforward: We need only search in the very same files for the stemmed and inflected forms of a word. The original sentences are generated from the latter information: From the \textit{msd} attribute values.

(3) Part-of-speech information should be included in the dictionaries even in the case of one-token units.

(4) The automatically attained translation pairs should be assigned to typical text types in which they occur.

(5) As the method itself deals only with one-token expressions an additional module is required to retrieve multiword expressions (such as collocations or verbal structures) and their translations for them (cf. Chapter 7). Language independent methods do exist to extract the desirable multiword expressions, thus, a cross-linguistically ”quasi-uniform” morphological annotation that can be processed alike should be established to preserve the language independent characteristics of the tool-chain.

Example The Hungarian lemma \textit{bár} has multiple meanings. As a noun it is a type of pub whereas as a conjunction it means ’but’. This sense distinction is clearly reflected by the Slovenian translations: As a noun it is translated as \textit{bar} and \textit{locale}, while as a conjunction it is translated as \textit{čeprav }’although’, \textit{čeetudi }’even if’ or \textit{vendar }’however’.

Thus, we have converted the parallel corpus into XML-format, which contains all the relevant information in a structured way, which in turn can be extracted in different ways when needed.
6.4 A Uniform Corpus Representation

6.4.1 Workflow — uniform corpus representation

1) Creating the XML version for each of the texts The XML parallel corpus was created on the basis of the morphologically disambiguated texts. Basically, a simplified version of the TEI-compliant Hungarian National Corpus served as standard and the following structural tags were used: \textit{w} for words, \textit{s} for sentences and \textit{p} for paragraphs. The \textit{s}-tag has an obligatory attribute: \textit{sid} (sentence identifier), which assign a unique identifier to each of the sentences in the corpus. \textit{w}-tags have two attributes: \textit{lemma} and \textit{msd}. The value of the attribute \textit{lemma} is the stem of the given word form, while the morphosyntactic description of the word form is assigned to the attribute \textit{msd}. The content node comprises the word form itself.

\begin{verbatim}
<s sid="1.732">
 <w lemma="Mohón" msd="Adv">Mohón</w>
 <w lemma="vár" msd="V">várták</w>
 <w lemma="az" msd="Det">az</w>
 <w lemma="első" msd="Num.NOM">első</w>
 <w lemma="oktatás" msd="N.ACC">oktatást</w>
 <w lemma="." msd="SPUNCT">.</w>
</s>
\end{verbatim}

\textbf{Figure 6.2:} - A Hungarian sentence in XML format: ”They eagerly awaited the first education”

2) Harmonizing the morphological annotation Since morphological analyzers vary from language to language, using different annotations, the morphological information has to be harmonized so that it can be processed in a uniform way later on, regardless of the previous processing steps. Adding this step is necessary for multiple reasons: First, the resulting dictionaries should be improved through including gender and part-of-speech information. Secondly, an additional module has to be set up which is able to handle multiword expressions, such as collocations or verbal structures. The extraction of such expressions rests upon part-of-speech information and upon various markers of the syntactic structure, such as case or word order. Thus, for multiple reasons, it is essential to make part-of-speech and case information directly accessible. We also took gender information into consideration wherever it was present (e.g. in the case of Lithuanian and Slovenian).

3) Aligning texts In the next step lemmatized versions were created and aligned by means of Hunalign (Varga et al, 1995).
6. PROOF-OF-CONCEPT EXPERIMENTS: ONE-TOKEN UNITS

(4) **Creating parallel XML corpus** The lemmatized and aligned sentences were looked up in the XML-corpora to create the aligned XML-corpora. A *tuid* (translation unit identifier) attribute has been also introduced to map the relevant sentences of the parallel corpus. Figure 6.3 examplifies a many-to-one alignment: The Hungarian sentences with *id* attributes 1.731 and 1.732 are aligned with the Lithuanian sentence with *sid* attribute 1.694.

\[
\begin{align*}
\text{<s sid="1.732" tuid="731-732,694-694">} \\
\text{<w lemma="Mohón" msd="Adv">Mohón</w>} \\
\text{<w lemma="vár" msd="V">várták</w>} \\
\text{<w lemma="az" msd="Det">az</w>} \\
\text{<w lemma="első" msd="Num.NOM">első</w>} \\
\text{<w lemma="oktatás" msd="N.ACC">oktatást</w>} \\
\text{<w lemma="." msd="SPUNCT">.</w>}
\end{align*}
\]

Figure 6.3: - An aligned Hungarian sentence in XML format: ”They eagerly awaited the first education”

Unfortunately, texts of XML-format could not have been directly aligned, since sentence alignment works best on the lemmatized versions of texts. Even the addition of a single ID number to every sentence distorts the quality of the alignment significantly, mostly in the case of short sentences. Therefore, (3) and (4) are necessary steps in the alignment process.

6.4.2 Results

Table 6.7 indicates the sizes of the resulting XML parallel corpora in terms of tokens, sentences and translation units.

Hungarian-Lithuanian That is, the Hungarian-Lithuanian parallel corpus comprises 4,813,956 Hungarian and 4,141,521 Lithuanian lemmata, 319,489 Hungarian and 320,678 Lithuanian sentences and 304,419 aligned translation units.

Hungarian-Slovenian As for Hungarian and Slovenian, the parallel corpus comprised 723,857 Hungarian and 809,448 Slovenian tokens, 40,926 Hungarian and 42,659 Slovenian sentences. It consisted of 38,791 aligned translation units.

Hungarian-English The Hungarian-English XML parallel corpus was created mainly for evaluation purposes. Since it was created on the basis of Hunglish 1.0 (Varga *et al.*
6.5 Conclusion

(94), the workflow differed somewhat from that of discussed in the previous section. As Hunglish 1.0 consisted of aligned sentences, only annotation was performed. The Hungarian sub-corpus was annotated with the HNC-tagger, while the English part of the parallel corpus was analyzed with the TreeTagger (Schmid (86)), using the tag-set of Penn Treebank. The Hungarian-English XML parallel corpus contains only one-to-one alignments of Hunglish 1.0 and the subtitle sub-corpus has been completely omitted.

As a result, a parallel corpus of XML-format has been created comprising 6,921,127 Hungarian and 8,312,795 English tokens and 494,044 sentences both in the English and the Hungarian side. Because the resulting parallel corpus consisted of only 1-to-1 mappings, the number of translation units was equal to that of the sentences.

<table>
<thead>
<tr>
<th></th>
<th>Hungarian</th>
<th>Lithuanian</th>
<th>Hungarian</th>
<th>Slovenian</th>
<th>Hungarian</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokens</td>
<td>4,813,956</td>
<td>4,141,521</td>
<td>723,857</td>
<td>809,448</td>
<td>6,921,127</td>
<td>8,312,795</td>
</tr>
<tr>
<td>Sentences</td>
<td>319,489</td>
<td>320,678</td>
<td>40,926</td>
<td>42,659</td>
<td>494,044</td>
<td>494,044</td>
</tr>
<tr>
<td>TUs</td>
<td>304,419</td>
<td>38,791</td>
<td>38,791</td>
<td>494,044</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.7: The sizes of the resulting XML parallel corpora in terms of tokens, sentences and translation units

6.5 Conclusion

In this chapter the generation process of two proto-dictionaries for lesser used languages is described. We have verified that word alignment on parallel corpora is able to facilitate the cost-effective creation of bilingual dictionaries.

This methodology meets the expectations put forward in the previous chapters. It is corpus-driven, thus it diminishes the role of intuition in the dictionary building process.

Economical considerations Once the parallel corpus is available, word alignment on parallel corpus significantly decreases the amount of human labour needed to produce a bilingual dictionary. It turned out that the most time-consuming part of the workflow is the collection and normalization of parallel texts.

Reversibility In the presence of the parallel corpus, the creation of the reversed proto-dictionary is rather straightforward. This is due to the assymmetric nature of the automatically attained translation relation, which is conditional probability. The
reversed proto-dictionaries—Lithuanian-Hungarian and Slovenian-Hungarian were generated, too.

Language independency Since hunalign and GIZA++ are language independent tools, sentence alignment and word alignment are readily re-applicable for any language pair. Thus, proto-dictionaries were generated also for Hungarian-English (and vv.), mainly for evaluation purposes.

Multiple meanings The method is able to rank polysemious meanings, that is, the automatically retrieved translation probability indicates how the translation space is divided among the various translation candidates, i.e. which is the most frequent translation of the source word. This feature of the applied method was illustrated with the example of the Lithuanian source word *puikus* which was assigned 9 Hungarian translations.

Encoding dictionaries An additional requirement toward the method was that it should enable the creation of encoding dictionaries. In our view, the automatically retrieved natural example sentences are of great help when trying to find the translation that ”produces the smoothest translation” among the possible translation candidates. Obviously, this step is not wholly automatic, but the retrieval of competing translation candidates and the relevant contexts for each of these candidates may help lexicographers (and end-users) to focus their attention on the relevant linguistic facts. This standpoint was underpinned by the example of *aiskiai*, the Hungarian translations of which were clearly characterized based on the retrieved contexts.

Evaluation Instead of correct and incorrect translation pairs, the evaluation is based on lexicographically useful and lexicographically useless translation candidates. The detailed evaluation of the resulting proto-dictionaries showed that the proportion of correct translation pairs depends upon the frequency of the source and target lemmata and on the automatically attained translation probabilities. Not surprisingly, the higher the translation probability, the greater the proportion of lexicographically useful translation candidates. The coverage of the proto-dictionaries is far below of what was expected (cf. Chapter 1). However, refinement of parameters might result in an increased number of lexicographically useful translation pairs. This will be discussed in Chapter 8 in more detail.

Uniform XML format The parallel corpora were converted into XML-format with a simple and uniform (if overlapping) morphological annotation. This conversion made the following workflow more simple, through rendering possible the uniform processing
of the various parallel corpora. Moreover, it is easier to generate parallel corpora with various levels of annotation (containing only lemmata or part-of-speech information is also included, etc.). This flexibility is especially important when extracting multiword expression translation candidates, since in this case finding the relevant morphological/syntactical information is not straightforward (cf. [7]).

Difficulties Unfortunately, some difficulties have to be addressed, too. First, at the present state of research the size of the parallel corpus is not great enough to ensure an appropriate coverage of dictionaries. This problem might have several solutions, either introducing related methods, such as retrieving translation pairs based on comparable corpora or fine-tuning the parameters used for filtering (cf. Chapter [8]).

Secondly, the method in its present form enables only the retrieval of one-token translation pairs. Thus, it does not handle collocates or verbal expressions. Since such structures are inherently part of natural languages and are essential for the production of smooth translations, they have to be included in the proto-dictionaries. In the next chapter we will investigate to what extent the automatic extraction of translations of verbal structures is possible.
6. PROOF-OF-CONCEPT EXPERIMENTS: ONE-TOKEN UNITS

6.6 Appendix: The Morphosyntactic Annotation

Hungarian The morphosyntactic annotation present in the Hungarian National Corpus served as the starting point of the conversion. The morphosyntactic annotation comprises no gender information, as in Hungarian distinctions based on grammatical gender do not exist. Hungarian cases and part-of-speeches are listed in Tables 6.8 and 6.9 respectively.

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Case</th>
<th>Morpheme</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOM</td>
<td>nominative</td>
<td>—</td>
<td>The dog barked.</td>
</tr>
<tr>
<td>ACC</td>
<td>accusative</td>
<td>-t, -at, -et, -ot, -öt</td>
<td>I saw a dog.</td>
</tr>
<tr>
<td>DAT</td>
<td>dative</td>
<td>-nak, -nek</td>
<td>I gave a bone to the dog.</td>
</tr>
<tr>
<td>ILL</td>
<td>illative</td>
<td>-ba, -be</td>
<td>I went into the theater.</td>
</tr>
<tr>
<td>INE</td>
<td>inessive</td>
<td>-ban, -ben</td>
<td>I am in the theater.</td>
</tr>
<tr>
<td>ELA</td>
<td>elative</td>
<td>-ból, -ből</td>
<td>I am coming from school.</td>
</tr>
<tr>
<td>ALL</td>
<td>allative</td>
<td>-höz, -hez, -höz</td>
<td>(Jánoshoz)</td>
</tr>
<tr>
<td>ADE</td>
<td>adhesive</td>
<td>-nél, -nél</td>
<td>I am at the house.</td>
</tr>
<tr>
<td>ABL</td>
<td>ablative</td>
<td>-től, -től</td>
<td>I am coming from the house.</td>
</tr>
<tr>
<td>SUB</td>
<td>sublative</td>
<td>-ra, -re</td>
<td>I sat onto a chair.</td>
</tr>
<tr>
<td>SUP</td>
<td>superessive</td>
<td>-n, -on, -en, -ön</td>
<td>I am sitting on a chair.</td>
</tr>
<tr>
<td>DEL</td>
<td>delative</td>
<td>-ról, -ról</td>
<td>We are talking about him.</td>
</tr>
<tr>
<td>INS</td>
<td>instrumental</td>
<td>-val, -vel</td>
<td>I am eating with a fork.</td>
</tr>
<tr>
<td>FAC</td>
<td>factive</td>
<td>-vá, -vé</td>
<td>It became sweet.</td>
</tr>
<tr>
<td>FOR</td>
<td>formative</td>
<td>-ként, -képp(en)</td>
<td>He works as a teacher.</td>
</tr>
<tr>
<td>TEM</td>
<td>temporal</td>
<td>-kor</td>
<td>He arrived at five.</td>
</tr>
<tr>
<td>CAU</td>
<td>causalis</td>
<td>-ért</td>
<td>We are fighting for her.</td>
</tr>
<tr>
<td>TER</td>
<td>terminative</td>
<td>-ig</td>
<td>You have to pay until May.</td>
</tr>
<tr>
<td>SOC</td>
<td>sociative</td>
<td>-stul, -stül</td>
<td>(komatostul)</td>
</tr>
<tr>
<td>ESS</td>
<td>essivus formalis</td>
<td>-ul, -ül</td>
<td>(rás dadisul)</td>
</tr>
</tbody>
</table>

Table 6.8: Hungarian case suffixes

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Det</td>
<td>Determiner</td>
</tr>
<tr>
<td>NU</td>
<td>Postposition</td>
</tr>
<tr>
<td>Pro</td>
<td>Pronoun</td>
</tr>
<tr>
<td>Num</td>
<td>Numerical</td>
</tr>
<tr>
<td>Con</td>
<td>Conjunction</td>
</tr>
<tr>
<td>A</td>
<td>Adjective</td>
</tr>
<tr>
<td>N</td>
<td>Nom</td>
</tr>
<tr>
<td>V</td>
<td>Verb</td>
</tr>
<tr>
<td>Dig</td>
<td>Digit</td>
</tr>
<tr>
<td>Adv</td>
<td>Adverb</td>
</tr>
<tr>
<td>Clt</td>
<td>Clitic</td>
</tr>
<tr>
<td>MIA</td>
<td>beölő participleXX</td>
</tr>
<tr>
<td>MIB</td>
<td>Past participle</td>
</tr>
<tr>
<td>MIF</td>
<td>Present participle</td>
</tr>
<tr>
<td>Int</td>
<td>Interjection</td>
</tr>
<tr>
<td>S</td>
<td>Sentence-word</td>
</tr>
<tr>
<td>Abb</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>V.INF</td>
<td>Infinitive</td>
</tr>
<tr>
<td>V.HIN</td>
<td>adverbial participle</td>
</tr>
<tr>
<td>ELO</td>
<td>előtagXXX</td>
</tr>
</tbody>
</table>

Table 6.9: Hungarian part-of-speeches
6.6 Appendix: The Morphosyntactic Annotation

Lithuanian As for Lithuanian we have considered three types of information: part-of-speech category, gender and case, based on Rimkutė et al. (80).

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>POS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Noun</td>
</tr>
<tr>
<td>N</td>
<td>Proper noun</td>
</tr>
<tr>
<td>N</td>
<td>Uninflective proper nouns ('Don', van, Sanct)</td>
</tr>
<tr>
<td>A</td>
<td>Adjective</td>
</tr>
<tr>
<td>V</td>
<td>Verb</td>
</tr>
<tr>
<td>Pro</td>
<td>Pronoun</td>
</tr>
<tr>
<td>V.PART</td>
<td>Particle 'walking'</td>
</tr>
<tr>
<td>N</td>
<td>Gerund 'on the walk home'</td>
</tr>
<tr>
<td>V.HPART</td>
<td>Half participle 'when speaking'</td>
</tr>
<tr>
<td>Num</td>
<td>Numeral</td>
</tr>
<tr>
<td>Con</td>
<td>Conjunction</td>
</tr>
<tr>
<td>Adv</td>
<td>Adverb</td>
</tr>
<tr>
<td>Particle</td>
<td>Particle 'also'</td>
</tr>
<tr>
<td>Prep</td>
<td>Preposition</td>
</tr>
<tr>
<td>Int</td>
<td>Onomatopoeic interjection</td>
</tr>
<tr>
<td>Abb</td>
<td>Acronym</td>
</tr>
<tr>
<td>Abb</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>V.INF</td>
<td>Infinitive</td>
</tr>
<tr>
<td>V.INF2</td>
<td>Second infinitive 'at a run'</td>
</tr>
<tr>
<td>Num rom</td>
<td>Roman numbers</td>
</tr>
<tr>
<td>UNKNOWNTAG</td>
<td>Unrecognized</td>
</tr>
<tr>
<td>Idiom</td>
<td>Idiom 'rest eternal'</td>
</tr>
<tr>
<td>Con</td>
<td>Connective idiom 'et cetera'</td>
</tr>
<tr>
<td>idPS</td>
<td>P.S.</td>
</tr>
<tr>
<td>Prep</td>
<td>Prepositional idiom 'inter alia'</td>
</tr>
<tr>
<td>Pro</td>
<td>Pronominal idiom 'nevertheless'</td>
</tr>
</tbody>
</table>

Table 6.10: Lithuanian cases and genders

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOM</td>
<td>Nominative</td>
</tr>
<tr>
<td>GEN</td>
<td>Genitive</td>
</tr>
<tr>
<td>DAT</td>
<td>Dative</td>
</tr>
<tr>
<td>ACC</td>
<td>Accusative</td>
</tr>
<tr>
<td>INS</td>
<td>Instrumental</td>
</tr>
<tr>
<td>LOC</td>
<td>Locative</td>
</tr>
<tr>
<td>VOC</td>
<td>Vocative</td>
</tr>
<tr>
<td>m</td>
<td>Masculine</td>
</tr>
<tr>
<td>f</td>
<td>Feminine</td>
</tr>
<tr>
<td>c</td>
<td>Common gender</td>
</tr>
<tr>
<td>n</td>
<td>Neuter gender</td>
</tr>
<tr>
<td>UNKNOWNTAG</td>
<td>Unrecognized</td>
</tr>
<tr>
<td>Idiom</td>
<td>Idiom 'rest eternal'</td>
</tr>
<tr>
<td>Con</td>
<td>Connective idiom 'et cetera'</td>
</tr>
<tr>
<td>idPS</td>
<td>P.S.</td>
</tr>
<tr>
<td>Prep</td>
<td>Prepositional idiom 'inter alia'</td>
</tr>
<tr>
<td>Pro</td>
<td>Pronominal idiom 'nevertheless'</td>
</tr>
</tbody>
</table>

Table 6.11: Lithuanian part-of-speech categories
6. PROOF-OF-CONCEPT EXPERIMENTS: ONE-TOKEN UNITS

English The tagset used for tagging the English sub-corpus of Hunalign is the Penn Treebank Tagset, described for example in Marcus *et al.* [61].

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Con</td>
<td>Coordinating conjunction</td>
</tr>
<tr>
<td>Num</td>
<td>Cardinal number</td>
</tr>
<tr>
<td>Det</td>
<td>Determiner</td>
</tr>
<tr>
<td>Expl</td>
<td>Existential there</td>
</tr>
<tr>
<td>FW</td>
<td>Foreign word</td>
</tr>
<tr>
<td>Prep</td>
<td>Preposition or subordinating conjunction</td>
</tr>
<tr>
<td>A</td>
<td>Adjective</td>
</tr>
<tr>
<td>A</td>
<td>Adjective, comparative</td>
</tr>
<tr>
<td>A</td>
<td>Adjective, superlative</td>
</tr>
<tr>
<td>LITEM</td>
<td>List item marker</td>
</tr>
<tr>
<td>MOD</td>
<td>Modal</td>
</tr>
<tr>
<td>N</td>
<td>Noun, singular or mass</td>
</tr>
<tr>
<td>N</td>
<td>Noun, plural</td>
</tr>
<tr>
<td>N</td>
<td>Proper noun, singular</td>
</tr>
<tr>
<td>N</td>
<td>Proper noun, plural</td>
</tr>
<tr>
<td>Adv</td>
<td>Predeterminer (all, half, nary, quite, such)</td>
</tr>
<tr>
<td>POS</td>
<td>Possessive ending (’s)</td>
</tr>
<tr>
<td>Pro</td>
<td>Personal pronoun</td>
</tr>
<tr>
<td>Pro</td>
<td>Possessive pronoun</td>
</tr>
<tr>
<td>Adv</td>
<td>Adverb</td>
</tr>
<tr>
<td>Adv</td>
<td>Adverb, comparative</td>
</tr>
<tr>
<td>Adv</td>
<td>Adverb, superlative</td>
</tr>
<tr>
<td>Particle</td>
<td>Particle</td>
</tr>
<tr>
<td>SYM</td>
<td>Symbol</td>
</tr>
<tr>
<td>TO</td>
<td>to</td>
</tr>
<tr>
<td>Int</td>
<td>Interjection</td>
</tr>
<tr>
<td>V</td>
<td>Verb, base form</td>
</tr>
<tr>
<td>V</td>
<td>Verb, past tense</td>
</tr>
<tr>
<td>V PART</td>
<td>Verb, gerund or present participle</td>
</tr>
<tr>
<td>V PART</td>
<td>Verb, past participle</td>
</tr>
<tr>
<td>V</td>
<td>Verb, non-3rd person singular present</td>
</tr>
<tr>
<td>V</td>
<td>Verb, 3rd person singular present</td>
</tr>
<tr>
<td>Det</td>
<td>Wh-determiner (that, what, whatever, which, whichever)</td>
</tr>
<tr>
<td>Pro</td>
<td>Wh-pronoun (what, who, whoever, whom, whomever)</td>
</tr>
<tr>
<td>Pro</td>
<td>Possessive wh-pronoun (whose)</td>
</tr>
<tr>
<td>Adv</td>
<td>Wh-adverb (how, however, whenever, when, where, whereby, wherever, why)</td>
</tr>
<tr>
<td>WPUNCT</td>
<td>wpunct</td>
</tr>
<tr>
<td>SPUNCT</td>
<td>spunct</td>
</tr>
</tbody>
</table>

Table 6.12: Tag-set in the Penn Treebank
Slovenian

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOM</td>
<td>Nominative</td>
</tr>
<tr>
<td>GEN</td>
<td>Genitive</td>
</tr>
<tr>
<td>DAT</td>
<td>Dative</td>
</tr>
<tr>
<td>ACC</td>
<td>Accusative</td>
</tr>
<tr>
<td>INS</td>
<td>Instrumental</td>
</tr>
<tr>
<td>LOC</td>
<td>Locative</td>
</tr>
</tbody>
</table>

Table 6.13: Slovenian cases

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>POS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro</td>
<td>Pronoun</td>
</tr>
<tr>
<td>Num</td>
<td>Numeral</td>
</tr>
<tr>
<td>Con</td>
<td>Conjunction</td>
</tr>
<tr>
<td>A</td>
<td>Adjective</td>
</tr>
<tr>
<td>N</td>
<td>Noun</td>
</tr>
<tr>
<td>V</td>
<td>Verb</td>
</tr>
<tr>
<td>Adv</td>
<td>Adverb</td>
</tr>
<tr>
<td>Int</td>
<td>Interjection</td>
</tr>
<tr>
<td>Abb</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>Prep</td>
<td>Preposition</td>
</tr>
<tr>
<td>Residual</td>
<td>Residual</td>
</tr>
<tr>
<td>Particle</td>
<td>Particle</td>
</tr>
</tbody>
</table>

Table 6.14: Slovenian part-of-speech categories
6. PROOF-OF-CONCEPT EXPERIMENTS: ONE-TOKEN UNITS
7

Extracting Parallel Verbal Structures

7.1 Introduction

Chapter 7 describes a solution to the treatment of multiword expressions within the given framework. The problem is addressed through the extraction of parallel verbal structures, that is, verbal structures and their translation candidates.

Verbal structure In accordance with Sass (85), the term verbal structure is conceived in a rather broad sense here. It refers to the verbal head along with its salient complementation pattern, where the complementation pattern comprises frequently occurring constituents regardless of their syntactic status, thus, complements and adjuncts are both considered. A verbal structure might also consist of lexically bound constituents.

Example For instance, the French expression donner lieu à ”give rise to” is a verbal structure comprising a lexically bound (lieu) and a lexically unbound constituent. In the latter case only the preposition (à) – the syntactic function marker – is inherently part of the verbal structure.

The algorithm The research described here heavily relies on the work presented in Sass (85) most elaborately. Throughout his PhD work his goal was to invent an algorithm which is able to extract verbal structures on the basis of corpus data. A suitable
algorithm is expected to find out which constituents belong to the verbal structure. It also should be able to determine whether the lexical head of each constituent is inherently part of the given verbal structure or not. This entails that the algorithm cannot be based on predefined syntactic patterns:

(1) The algorithm is expected to be language independent also operating for languages with various (or free) word orders.

(2) Verbal structures are made up of different number of constituents.

(3) It cannot be determined in advance whether a head is lexically bound or not.

Main features of the extraction algorithm The algorithm of Sass (85) exhibits two features which are indispensable for our purposes:

(1) The algorithm is language independent that is, it does not make use of any language specific feature.

(2) Verbal structures are extracted in an unsupervised way.

Language independency is essential so that the same algorithm could be applied to any language. Since the production of training data usually is not affordable in the case of less resourced languages an unsupervised learning algorithm should be applied.

The exact operation of the algorithm will be described in Subsection 7.2.

Example Table 7.1 gives some examples of French and Dutch verbal structures. In fact, this entry is part of the automatically generated verbal proto-dictionary. Four different Dutch translations were assigned to the French verbal structure *prendre médicament* "take medicine". The most likely Dutch translation is the literary translation *geneesmiddel innemen*. The next translation *geneesmiddel gebruiken* "use medicine" has a slightly different meaning but might be used in similar contexts. Although the third translation *start met gebruik van* "start the use of" is not a whole verbal structure, it can also be considered as a relevant translation. Finally, although the least likely translation *staan onder invloed van drug* – literally: "stand under the influence of drug" – has intuitively a different meaning, one might imagine contexts where the TL expression can be used as the translation of the SL expression.
7.1 Introduction

<table>
<thead>
<tr>
<th>Expression$_{source}$</th>
<th>Expression$_{target}$</th>
<th>p_r</th>
<th>F_s</th>
<th>F_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>prendre m´edicament=obj</td>
<td>neem-in genees-middel=obj</td>
<td>0.377</td>
<td>53</td>
<td>32</td>
</tr>
<tr>
<td>gebruik genees-middel=obj</td>
<td>start gebruik=met:cmp met:cmp-van</td>
<td>0.102</td>
<td>53</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>sta invloed=onder:particle drug=van:cmp</td>
<td>0.097</td>
<td>53</td>
<td>28</td>
</tr>
</tbody>
</table>

Table 7.1: A sample entry from the French-Dutch verbal proto-dictionary.

Relation to phrase alignment Nowadays phrase-alignment is a hot topic in the field of statistical machine translation. Phrase alignment techniques start out of word alignment and they try to find out how complete phrases are aligned by applying some suitable heuristics. As verbal structures may be constituted by long-distance dependencies, especially in the case of free constituent order languages—where verbal complements and adjunct are free to mingle—the usual phrase-based method used in MT does not work here. Thus, verbal structures should be detected independently of word alignment in a preprocessing phase.

Workflow Accordingly, the workflow is made up of the following steps:

(1) In the first step a list of verbal structure candidates are extracted from the corpora.

(2) Then, the tokens of each occurrence of the verbal structures are merged.

(3) In the rest of the workflow they could be handled as one-token units.

Structure of Chapter 7 Chapter 7 is structured as follows: in Section 7.2 the applied extraction method for verbal structures is described. Then two experiments were carried out. The first one is a proof-of-concept investigation with the aim to verify the viability of the approach. In this case a shallow parsed parallel corpus was exploited. The corresponding workflow and the results are described in Section 7.3. In Section 7.4 we have enhanced our method and utilized a deep parsed parallel corpus instead of the shallowed parsed parallel corpus. Section 7.5 describes the conclusions and points out possible further research directions.

Acknowledgements B´alint, Kata, Villemonte, D´avid We are grateful for his help to extract verbal structures from the Dutch and French corpora.
7. EXTRACTING PARALLEL VERBAL STRUCTURES

7.2 Description of the Extraction Method

7.2.1 Conversion of input corpora

Clause-boundary and noun phrase detection The extraction method is based on the following presuppositions:

(1) The verb and its whole complementation frame (adjuncts, complements and their syntactic markers) lie within one clause.

(2) One clause contains the complement structure of only one verb.

Hence, the input corpus has to have clause-boundary annotation. Moreover, for a number of reasons the extraction of relevant complementation frames presupposes that noun phrase information is also present in the corpus.

(1) Since it is usually one of the head nouns that is a bound element in the verbal structure (if there is any at all) we need to know which constituent is the head noun.

(2) Being part of the complementation frame, syntactic markers (prepositions, case suffixes, special syntactic positions) between head nouns and the verb should also be detected.

Uniform representation of corpus text One serious expectation toward the verbal structure extraction algorithm is that it should be language independent, that is, it should be able to detect verbal structures regardless of the specificities of the particular language. Various languages greatly differ with regard to how they mark syntactically the relation between the constituents and the verb. Roughly speaking, the complementation pattern of a verb comprises subjects, objects, complements and adjuncts, each of which can be marked by certain positions in the sentence (e.g. subjects and objects in bounded constituent order languages) or by prepositions, postpositions and case suffixes. The algorithm should operate alike, regardless of how the complementation pattern of the verb is expressed. Thus, corpus sentences are converted into partial dependency trees, thus providing a uniform representation of diverse language data.

Dependency grammar In the proposed framework the central element of a sentence is the verb. Complements and adjuncts are dependent on the verb. The specific
relations are marked by case suffixes or postpositions in Hungarian. In other languages word order, prepositions may also mark the syntactic function. The algorithm considers only those function markers that directly appear in the corpus. It does not take semantic information (e.g. thematic roles) into account. In dependency trees are represented by nodes and syntactic relations by edges regardless of the exact nature of the syntactic function marker (case suffix, postposition, preposition, subject or object).

Example Figure 7.1a and 7.1b are two verbal structures represented as dependency trees. In both cases there are two dependents of the verb, a subject and an object. The object is lexically bound. In fact, the representations of the two verbal structures are the same, except for the lexical elements.

Multi-level dependencies However, in many verbal structures the dependent of a dependent element—an adjunct of the lexical head, etc—might be also salient, thus has to be included into the verbal structure. These structures are multi-level dependencies. Although Sass (85) converts multi-level dependencies into one-level dependencies, in the present analysis we have kept multi-level dependencies in their original form.

Length of verbal structures The length of a verbal structure is the sum of the number of bound lexical elements and the number of dependency labels in the given verbal structure. The subject (if any) and the subject relation is not considered. Thus the length of ”prendre médicament” and ”geneesmiddel innemen” is 3, while the length of ”staan onder invloed van drug” is 5.

Language independency The language independent nature of the model is ensured by the fact that it exploits merely the predicate-argument structure of the given language. Although the relations of the constituents to the head verb can be realized
in many ways, they can be converted into a uniform representation by means of dependency grammar. Thus, the key issue is model representation. After the language dependent annotation is converted into the required representation the verbal structure extracting algorithm operates alike, regardless of the language (C.f. 7.1a and 7.1b).

7.2.2 The algorithm

Once the morphosyntactically annotated corpus is converted into the desired representation, the extraction of verbal structures takes place.

The algorithm The technique determines the salient complementation frames of a verb by counting the frequent subframes. It follows three main steps:

(1) The preliminary verbal structures are generated on the basis of all clauses in the corpus.

(2) Every nominal head of these verbal structures is deleted in all possible variations.

(3) The resulting verbal structures are ranked according to their length. Verbal structures occurring less than five times in the corpus are omitted and their frequency is added to the frequency of the first matching verbal structure in the ranked list.

The repeated execution of the last step results in a list of the relevant verbal structures.

As a result, we obtain verbal structures, such as the French mettre accent sur or its Dutch equivalent leggen nadruk op 'put emphasis on'.

In what follows, we will examine whether this approach can be extended to retrieve parallel verbal structures that could be included in the proto-dictionaries.

7.3 Extracting parallel verbal structures from a shallow parsed parallel corpus

In this section a proof-of-concept investigation is described to prove that the proposed technique is suitable to detect translations for verbal structures. Throughout the experiment a predefined class of verbs were focused on and the relevant verbal structures
were also manually selected. Thus, the workflow described in this section is not fully automatic.

Workflow The workflow is made up of the following steps:

1. Manual selection of 20 frequent verbs and their translations,
2. The conversion of the input corpus,
 - (i) Clause-boundary detection,
 - (ii) Noun phrase annotation,
 - (iii) Conversion into partial dependency trees,
3. Extraction of the most frequent verbal structures for both Dutch and French,
4. Creating the proto-dictionary,
 - (i) Merging each occurrence of the verbal structures into one-toke expressions in the corpus, so that they could be treated as one-token lemmata,
 - (ii) Performing word alignment,
 - (iii) Filtering,
5. Evaluation.

7.3.1 Semi-automatic Extraction of Verbal Structures

7.3.1.1 The scope of investigated verbs

In the first step 20 frequent polysemous French verbs were selected manually (e.g. *mettre* 'put'). Then one Dutch translation was assigned manually to each of these French verbs based on a French-Dutch dictionary (e.g. in the case of the French verb *mettre* the Dutch verb *leggen* was selected as translational equivalent). Table 7.2 lists the selected French verbs and their Dutch equivalents. Table 7.2 also indicates the number of the different retrieved verbal structures. As it is presented in 7.2, for some verbs (*enlever, rester, voir, vergaan, zien*) not any verbal structures could have been retrieved meeting the criteria defined below in Section 7.3.2. In the next step, French and Dutch verbal structures were extracted automatically from the relevant monolingual part of the parallel corpus applying the algorithm of Sass (85).
7. EXTRACTING PARALLEL VERBAL STRUCTURES

<table>
<thead>
<tr>
<th>French verb</th>
<th>Structure types</th>
<th>Dutch translation</th>
<th>Structure types</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>donner</td>
<td>12</td>
<td>geven</td>
<td>31</td>
<td>give</td>
</tr>
<tr>
<td>effectuer</td>
<td>3</td>
<td>teweegbrengen</td>
<td>0</td>
<td>carry out</td>
</tr>
<tr>
<td>enlever</td>
<td>0</td>
<td>verwijderen</td>
<td>1</td>
<td>remove</td>
</tr>
<tr>
<td>faire</td>
<td>31</td>
<td>doen</td>
<td>12</td>
<td>do</td>
</tr>
<tr>
<td>mener</td>
<td>2</td>
<td>leiden</td>
<td>4</td>
<td>lead</td>
</tr>
<tr>
<td>mettre</td>
<td>26</td>
<td>leggen</td>
<td>5</td>
<td>put</td>
</tr>
<tr>
<td>montrer</td>
<td>4</td>
<td>wijzen</td>
<td>1</td>
<td>show</td>
</tr>
<tr>
<td>obtenir</td>
<td>5</td>
<td>behalen</td>
<td>2</td>
<td>obtain</td>
</tr>
<tr>
<td>offrir</td>
<td>1</td>
<td>aambieden</td>
<td>2</td>
<td>offer</td>
</tr>
<tr>
<td>ouvrir</td>
<td>1</td>
<td>openen</td>
<td>1</td>
<td>open</td>
</tr>
<tr>
<td>passer</td>
<td>3</td>
<td>vergaan</td>
<td>0</td>
<td>pass</td>
</tr>
<tr>
<td>porter</td>
<td>3</td>
<td>brengen</td>
<td>14</td>
<td>bring</td>
</tr>
<tr>
<td>prendre</td>
<td>23</td>
<td>nemen</td>
<td>23</td>
<td>take</td>
</tr>
<tr>
<td>recevoire</td>
<td>2</td>
<td>krijgen</td>
<td>12</td>
<td>receive</td>
</tr>
<tr>
<td>rendre</td>
<td>3</td>
<td>maken</td>
<td>19</td>
<td>make (sb ADJ)</td>
</tr>
<tr>
<td>rester</td>
<td>0</td>
<td>blijven</td>
<td>1</td>
<td>stay</td>
</tr>
<tr>
<td>tenir</td>
<td>4</td>
<td>houden</td>
<td>11</td>
<td>hold</td>
</tr>
<tr>
<td>traiter</td>
<td>1</td>
<td>behandelen</td>
<td>2</td>
<td>treat</td>
</tr>
<tr>
<td>trouver</td>
<td>3</td>
<td>vinden</td>
<td>6</td>
<td>find</td>
</tr>
<tr>
<td>voire</td>
<td>0</td>
<td>zien</td>
<td>0</td>
<td>see</td>
</tr>
</tbody>
</table>

Table 7.2: French verbs and their Dutch translations. The number of verbal structure types.

7.3.1.2 Conversion of the input corpus

Input corpus The input corpus was the French-Dutch sub-corpus of the Dutch Parallel Corpus (Clercq & Perez (21)). The 6,820,547-token subcorpus consists of 186,945 aligned units. In our experiment both noun phrase detection and clause-boundary segmentation were carried out through rather simple approximative rules for both languages. Some of the main principles behind the rules are listed below.

clause-boundary detection clause-boundaries are indicated by any of the following:

(1) Every sentence boundary,
(2) Conjunctions,
(3) The Dutch te and the French pour introducing a subordinate clause,
(4) Relative pronouns,
7.3 Parallel verbal structures and shallow parsed corpus

(5) Certain punctuation marks (comma, colon and semicolon) if they occur between two verbs in the same sentence.

Noun phrase detection We have relied on the following rules while detecting noun phrases:

(1) Nouns are considered as heads of noun phrases,

(2) Reflexive pronouns (Dutch zich and French se) are also considered to be heads of noun phrases,

(3) The syntactic relation is indicated by the preposition at the beginning of the noun phrase, If no preposition is present in that position,

• noun phrases directly before the verb are taken to be subjects,

• noun phrases directly after the verb are considered to be objects.

In the next step, the sentences of the morphologically annotated DPC was converted into partial dependency trees, and the automatic extraction method retrieved verbal structures comprising any of the listed verbs.

7.3.2 Manual Selection of Relevant Verbal Structures

Lexicographically interesting translations Since our purpose is to find translations to be included in a dictionary, we have manually selected verbal structures that presumably have non-compositional translations. However, recall that the described methodology is expected to be language independent in order to be easily re-applicable to different language pairs. This requirement entails that we cannot decide in advance—on the basis of monolingual data—whether a verbal structure will be interesting from a translation point of view and should be kept in a dictionary, or conversely, its translation is fully compositional and, thus, should be neglected. For example, although the French verbal structure mettre l’appareil hors tension ‘cut off power to the device’ is compositional, its Dutch translation – uitschakelen – does not preserve the original structure, hence this translation should be included in the proto-dictionary.

The applied criteria Consequently, we had to make use of certain hints when determining whether an expression is worth keeping or not. The following cues were relied on:

161
7. EXTRACTING PARALLEL VERBAL STRUCTURES

(1) The meaning of the source expression is not transparent (e.g. faire mouche ’hit the bull’s eye’).

(2) The translation of the verbal structure will presumably not be translated into the target language in a compositional way:

(a) The verbal structure is institutionalized (e.g. mettre l’appareil hors tension ’power off the device’).

(b) The syntactic function of at least one of the nouns in the verbal structure is a verb modifier in the Hungarian translation of the original expression (cf. Kiss et al. (51)) (e.g. donner conseil, ”tanácsot ad” – advise).

On the other hand, some distributional criteria were also set:

(4) Verbal structures were kept only if they contained at least one noun.

(5) In this experiment we confined ourselves to the examination of nouns occurring in any relation to the verb except for the subject relation.

(6) We did not strive to keep the complete verbal frame, that is, empty suffixes without a typical bound noun were omitted in some cases. The reasons behind this are twofold:

(a) Omitting empty case suffixes increases the number of the occurrence of the given frame type, thus reducing the problem of data sparseness.

(b) As the input corpus of the word alignment component contained neither partial syntactic annotation nor clause-boundary information, the right preposition could have not been easily recognized in the parallel corpus at that stage of research.

Types of verbal structures Verbal structures matching the following syntactic patterns serve as input for the word alignment algorithm. (V: verb; N_ACC: the syntactic function of the noun is object; ACC: an object with an unbound nominal head; N_PREP: the noun appears with a preposition; PREP: a preposition with an unbound nominal head):

(1) V + N_ACC

(2) V + N_PREP
7.3 Parallel verbal structures and shallow parsed corpus

(3) V + ACC + N_PREP
(4) V + N_ACC + PREP
(5) V + N_PREP + PREP
(6) V + N_PREP + N_PREP + PREP

By the end of this stage 126 French verbal structures and 146 Dutch verbal structures were available. In the next phase the selected verbal structures are detected in both side of the parallel corpus and are merged into a one-token expression so that they can be aligned by the alignment component.

7.3.3 Creating the Proto-Dictionary

Merging In the rest of the workflow the selected multi-word expressions were treated as one-token units so that they could serve as direct input to the alignment component.

The input corpus for word alignment has been lemmatized but does not contain clause-boundary or noun phrase information. The first step of this stage is the detection of the listed verbal structures in the corpus and merging them into one-token expressions. The 126 selected French verbal structures occurred 7805 times in the French part of the parallel corpus, while the 146 Dutch verbal patterns occurred 8029 times in the Dutch part of the parallel corpus.

Aligning Just as in the case of the preceding research phases, word alignment was carried out with GIZA++ alignment tool (Och & Ney (71)). This algorithm assigns translational probabilities to source language and target language lemma pairs. The translational probability is an estimation of the conditional probability of the target word given the source word, \(P(W_{\text{target}}|W_{\text{source}}) \) by means of the EM (expectation maximization) algorithm (Dempster et al. (23)). The retrieved lemma pairs together with their translational probabilities served as the starting point for the proto-dictionaries.

Filtering However, as the assigned translational probability strongly varies, at this stage we have many incorrect translation candidates. Therefore, some constraints had to be introduced to find the best translation candidates without the loss of too many correct pairs. Our previous experiments (e.g. Héja (13)) have shown that exploiting corpus frequency data besides translational probability facilitates filtering. Thus, the data illustrated in Table 7.3 have to be included in the proto-dictionary.
7. EXTRACTING PARALLEL VERBAL STRUCTURES

Based on previous evaluation of Hungarian-Lithuanian and Hungarian-Slovenian proto-dictionaries entries in the proto-dictionary need to meet the following general criteria:

(1) Source language and target language members of lemma pairs should occur at least 5 times in order to have reliable amount of data when estimating probabilities.

(2) If the translational probability is less than 0.5, the proportion of correct translation pairs drops considerably, hence the translational probability should be equal to or greater than 0.5.

(3) The ratio of the frequency of the source and target lemmata (or expressions) may not be higher than a certain threshold. The reason behind this is that in the case of rarely used source lemmata the alignment algorithm might assign high translational probabilities to incorrect lemma pairs if the target lemma occurs frequently in the corpus and both members of the lemma pair recurrently show up in aligned units. Table 7.4 illustrates this phenomenon.

| Expression_s | Expression_t | p(w_t|w_s) | Freq_s | Freq_t |
|---------------|--------------|----------|--------|--------|
| mettre à jour | actualiseren | 0.047 | 105 | 39 |

Table 7.3: Data in the verbal proto-dictionary

| Expression_s | Expression_t | p(w_t|w_s) | Freq_s | Freq_t |
|---------------|--------------|----------|--------|--------|
| mettre vie en danger | rekening houden | 0.877 | 24 | 577 |

Table 7.4: Incorrect translation candidates

As before, since the objective of this work is to provide lexicographers with empirical data, instead of simply telling apart bad translation candidates from right ones, we have decided to distinguish between lexicographically useful and lexicographically useless translation candidates throughout the evaluation process.

You might be able to recall that the evaluation of one-word units has yielded the result that with the above parameters (frequency of source and target lemmata is
at least 5 and the translation probability is at least 0.5) about 90% of the retrieved translation candidates is lexicographically useful. However, the aim of this method is not to increase precision but to optimize both precision and coverage, and to find the most useful trade-off between the two. Considering the fact that coverage correlates inversely with precision and manual post-editing has to be carried out anyway, the 90% precision is too high.

According to a further observation, in the case of the most frequent lemmata lower translational probabilities also yield rather good results: most of the translation candidates turned out to be lexicographically useful. Thus, coverage can be improved further. Since our basic objective at this stage is not to find the best parameter setting but to examine whether our original methodology can facilitate terminological and lexicographic work by extending it to verbal structures, we set the parameter values so that we could keep the most lexicographically useful translation candidates, even if it leads to low precision.

Consequently, we included every translation candidate in our proto-dictionary where both the source and the target lemma occurred more than 5 times. The translational probability dropped from 0.5 to 0.2. In the next section our results will be presented.

7.3.4 Results

Partial evaluation of our results has shown that the proposed method is suitable for the extraction of translations even in the case of verbal structures. With the parameters determined above, we obtained 906 translation candidate pairs, where at least one member of the pair is a verbal structure. We had 113 different French verbal structures in our proto-dictionary and 127 different Dutch verbal structures. We focused on the French verbal expressions throughout the evaluation.

294 translation candidates were manually checked. The evaluation was based on three categories: besides completely correct and completely incorrect translation candidates we also distinguished partially correct translation candidates. The latter refers to translation candidates where any member of the pair is an unrecognized multiword expression, thus resulting only in partial alignment.

Out of the 294 translation candidates 57 were completely correct translations (19%) and 28 translation candidates turned out to be partially correct (9.5%).
Possible improvements Based on the manual evaluation of the candidate pairs we intend to introduce an additional parameter to filter out bad translation candidates: the number of sentences in which a given candidate pair shows up. An additional finding was that the number of incorrect translation candidates could be significantly reduced if clause-boundary and noun phrase information were exploited in the alignment phase, as well. The experiment described in Section 7.4 is focusing on this issue.

However, it is important to note that the main objective of our investigation was not to achieve the best results, but to determine whether our method is apt to retrieve verbal structure translation pairs. Precision can be considerably increased by changing the values of the parameters. Table 7.5 and 7.6 present two examples of the proto-dictionary, thus illustrating how the proposed approach retrieves verbal structure translations.

| Expression₁ | Expression₂ | \(p(w_t|w_s) \) | \(\text{Freq}_1 \) | \(\text{Freq}_2 \) |
|--------------|--------------|----------------|----------------|----------------|
| mettre_{\` a jour} | bijwerken | 0.65 | 105 | 60 |
| FR: Comment les met-on à jour ?
NL: Hoe worden ze bijgewerkt ?
EN: How can these be updated? |
| mettre_{\` a jour} | actualiseren | 0.047 | 105 | 39 |
| FR: De plus, un PGR mis à jour doit être soumis :
NL: Bovendien dient een geactualiseerd RMP ingediend te worden :
EN: In addition, an updated RMP has to be submitted: |
| mettre_{\` a jour} | aanpassen | 0.037 | 105 | 442 |
| FR: Mise à jour de la liste des produits admis au remboursement
NL: Aanpassing van de lijst van de voor vergoeding aangenomen producten
EN: Adjustment of the list of products admitted for reimbursement |
| mettre_{\` a jour} | update | 0.03 | 105 | 34 |
| FR: Toutes les informations au sujet du changement y ont été publiés avec de fréquentes mises à jour .
NL: Alle informatie met betrekking tot de omslag is erop gepubliceerd , met regelmatige updates .
EN: All information concerning changes is published there with regular updates |

Table 7.5: Example 1

7.3.5 Discussion

The aim of this section was to describe an experiment which confirms that the methodology developed for the extraction of one-token translation candidates from parallel corpora can be extended to retrieve of multi-word verbal structures.
7.3 Parallel verbal structures and shallow parsed corpus

| Expression₀ | Expression₄ | $p(w₁|w₄)$ | $Freq_0$ | $Freq_4$ |
|-------------|-------------|-------------|----------|----------|
| prendre_en_considération | nemen_in_aanmerking | 0.186 | 93 | 73 |
| FR: Les offres qui dérogent à cette date ne sont pas prises en considération. |
| NL: Offertes die hiervan afwijken worden niet in aanmerking genomen. |
| EN: Offers deviating from the indicated date will not be considered. |
| prendre_en_considération | houden_rekening | 0.167 | 93 | 438 |
| FR: De plus, un PGR mis à jour doit être soumis: |
| NL: Bovendien dient een geactualiseerd RMP ingediend te worden: |
| EN: In addition, an updated RMP has to be submitted: |
| prendre_en_considération | nemen_in_overweging | 0.022 | 93 | 35 |
| FR: La date de conclusion à prendre en considération pour le choix . . . |
| NL: De datum van sluiting die in overweging moet worden genomen voor de keuze . . . |
| EN: Termination date that has to be considered for the choice . . . |

Table 7.6: Example 2

In the first monolingual phase we retrieved verbal structures independently from both the source and the target language in a semi-automatic way. Verbal structures for predefined source language verbs and for their translations were listed automatically on the basis of corpus data and the relevant verbal structures were then manually selected. In the next step every occurrence of the selected verbal structures was merged in the parallel corpus into a one-token unit, so that they could serve as input for the alignment algorithm.

Although due to the parameter setting the precision of our results was rather low, the retrieved translation candidates confirm that the proposed methodology is suitable to detect translations of verbal structures.

Manual evaluation has shown that considerable improvement can be achieved by developing the noun phrase and clause-boundary detection for both languages. In addition, this information has to be exploited throughout the alignment process, too.

The coverage of our proto-dictionary can be significantly increased if we considered all verbs occurring in the parallel corpus instead of a predefined verb list. We expect that such an improvement would decrease the number of partial matches and by doing so, further augment the number of perfect translations. These improvements are included in the next experiment described in the following section.
7. EXTRACTING PARALLEL VERBAL STRUCTURES

7.4 Extracting parallel verbal structures from deep parsed parallel corpus

I am particularly grateful for Villemont de la Clergerie and Kata Gábor for the parsing of the French corpus. Our thanks go also to Dávid Takács, who converted the French sub-corpus into partial dependency trees and made a great contribution to the evaluation of the results, too.

Focus of the research Based on the experiment described in Section 7.3 both precision and recall should be augmented. The main threads of the investigation were determined as follows:

(1) Instead of a predefined list of verbs all verbs should be considered

(2) Instead of investigating only verbal structures with bound nominal head(s) every possible verbal structure should be dealt with

(3) Instead of exploiting parallel corpora with shallow syntactic annotation we have used deep parsed corpus, thus instead of the simple noun phrase and clause-boundary detection rules, more intricate rules should be applied.

(4) Noun phrase and clause-boundary information was considered throughout the alignment process, too.

According to our expectations the proposed method can contribute to the design of the microstructures of the verbal entries by supplying information on the relevant complement structures and the typically co-occurring nominal heads. In what follows, we describe the workflow comprising of three main stages (syntactic parsing of the parallel corpus, the automatic extraction of verbal structures, creation of the proto-dictionary).

A similar experiment is described in Sass (85)

7.4.1 Workflow

The workflow is the same as in the case of shallow syntactic parsing except for the fact that instead of the approximative clause-boundary and noun phrase detection rules deep syntactic analysis for both French and Dutch. Therefore, the preprocessing step is made up of four phases:
(1) In the first phase the deep-syntactic analysis of each side of the Dutch-French parallel corpus was performed,

(2) Then the resulting phrase structures were converted into partial dependencies which is the required input format of the next step,

(3) Thirdly, monolingual verbal structures were extracted from each side of the parallel corpus,

(4) Finally, the selected verbal structures were merged into one-token expressions in both side of the parallel corpus so that they could serve as input to the alignment algorithm.

We have utilized the same parallel corpus as previously, the Dutch-French subcorpus of the DPC containing 186,945 aligned units. Figure 7.1 depicts the complete workflow.

Syntactic parsers The Dutch corpus was parsed by means of the HPSG parser Alpino (Bouma et al. [12]) while the French corpus was parsed with the hybrid TIG/TAG parser Villemonte de la Clergerie [97].

Alpino is a rule-based syntactic analyzer which supplies detailed syntactic annotation: annotates the phrase boundaries and assigns syntactic function labels to the phrases. Alpino recognizes also the verbal complement structures and particles. It also annotates the inner structure of phrases: it labels the head of the phrase and its dependents. From our perspective, an important feature of Alpino is that it recognizes the clause-boundaries, as well, and assigns the relevant labels (main clauses, subordinate clauses, coordinations) to them. The French FRMG parser also performs a deep syntactic analysis. However, the annotation does not contain clause-boundary segmentation.

Clause-boundary detection for French Since the algorithm extracts verbal structures on the basis of clause-boundary information, an extra module had to be added to detect clause-boundaries in the case of French. The module consists of the following rules:

(1) Participial structures constitute a clause in themselves.

(2) Relative pronouns always indicate a clauseboundary.

(3) Infinitives always indicate a clauseboundary if the infinitive is directly preceded by a preposition (de, pour, sans, en vue de, à, etc.)
7. EXTRACTING PARALLEL VERBAL STRUCTURES

Figure 7.1: Extracting translation candidates for verbal structures on the basis of a deep parsed parallel corpus
7.4 Parallel verbal structures and deep parsed corpus

(4) Coordinate conjunctions between two finite verbs always indicate a clauseboundary (et ’and’, puis ’then’, ou ’or’, etc.)

(5) Subordinate conjunctions between two finite verbs always indicate a clauseboundary (que ’that’, quand, pendant que ’when’, etc.)

(6) If there is no clause boundary between two finite verbs, the first comma, semicolon or colon should designate a clause boundary.

The rules are to be applied one after the other. The last rule applies in all the cases where there are two finite verbs without a clause-boundary between them.

Conversion into partial dependency trees In the next step the HPSG and TIG/TAG annotations were converted into partial dependency trees. To increase coverage we had the intention to make use of all information on verbal structures available in the deep-parsed parallel corpus. For this purpose not only finite verbs and their dependencies were taken into account but passive and participial structures were also converted into clauses containing one finite verb. These conversions rest upon the detailed syntactic annotation, which marks the derivative forms of verbs, too (e.g. passive, various participial structures).

Passive–active Passive structures were converted into active ones for both French and Dutch. One such conversion is exemplified in Figure 7.2.

![Figure 7.2: A passive-active conversion](image)

Participial structures in a modifier position As it is indicated in Figure 7.3, if participial structures appeared in a modifier position, they were converted into separate clauses. The syntactic functions of the constituents are dependent of the exact nature of the participial structure.
7. Extracting Parallel Verbal Structures

Figure 7.3: Participlial structure as an additional clause

Present perfect Auxiliaries (*est, avoir, zijn, hebben*) were deleted in the present perfect (passé composé) verbal structures.

Feature selection Finally, we had to determine the set of features yielded by the deep syntactic annotation to be considered while extracting verbal structures. Here, two contradictory requirements should have been met: on the one hand, exploiting more features characterizes the verbal structures more precisely. On the other hand, keeping too many features might considerably impair the results, since irrelevant syntactic labels increase the diversity of data. Thus, we have experimented with two different feature sets.

1. The verb and the heads of the direct dependents were kept. Adjectives and complements dependent on the dependent head were also preserved, while determiners were omitted. Only the first constituent of a coordinated construction was kept (except for coordinated clauses).

2. Only the verbal lemma and the head of the direct object were taken into account. Verbal structures only with different verbal lemma or different direct object were kept separately, otherwise they were merged and the corpus frequencies were re-counted.

7.4.2 The automatic extraction of verbal structures

Similarly to the previous experiment the verbal structures were extracted fully automatically by applying the method of Sass (85) described in Section 7.2 in more detail.
7.4 Parallel verbal structures and deep parsed corpus

However, there are two main differences between the previous experiment and the current one:

1. Instead of a predefined list of verbs all verbs were considered in the corpus.
2. The restricted scope of complementation patterns (those consisting of at least one nominal head) was extended to all types of complementation frames.

Examples In Tables 7.7, 7.8, 7.9 and 7.10 some examples of the automatically attained verbal structures are presented.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Freq</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>gebruik obj1</td>
<td>470</td>
<td>use sg</td>
</tr>
<tr>
<td>gebruik niet=mod:ADV obj1</td>
<td>159</td>
<td>do not use sg</td>
</tr>
<tr>
<td>gebruik obj1 obj1_ADJ</td>
<td>104</td>
<td>use a sort of sg</td>
</tr>
<tr>
<td>gebruik obj1 als=predc:CP</td>
<td>95</td>
<td>use sg as ...</td>
</tr>
</tbody>
</table>

Table 7.7: The four most frequent structure of the Dutch verb *gebruiken*

Table 7.7 reflects an unfortunate consequence of the too detailed feature set. Accordingly, some complementation patterns are completely irrelevant: Based on the results, *gebruik niet=mod:ADV obj1* and *gebruik obj1 obj1_ADJ* are both frequently occurring frame types. However, as they are fully compositional, it is not really feasible to store them in a dictionary as separate entries. Yet, both frame types could be converted into the first one (*gebruik obj1*) by omitting the irrelevant constituents, thus increasing the frequency of that frame type and the likelihood of extracting the right translation equivalents. Table 7.8 presents also some irrelevant verbal frames as a result of the deep syntactic analysis.

As Table 7.8 shows, if the object modifying adjective was not taken into account, then the most frequent complementation patterns of *geven* were exactly the expected ones.

Verbal structures in 7.9 comprise a lexical element, too. This example illustrates an other undesirable effect of deep parsing: the analyzer might annotate the same surface...
7. EXTRACTING PARALLEL VERBAL STRUCTURES

<table>
<thead>
<tr>
<th>Expression</th>
<th>Freq</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>geef obj1</td>
<td>170</td>
<td>gives sg</td>
</tr>
<tr>
<td>geef obj1 obj1_ADJ</td>
<td>80</td>
<td>give a sort of sg</td>
</tr>
<tr>
<td>geef aan:obj2 obj1</td>
<td>78</td>
<td>give sg to sy</td>
</tr>
<tr>
<td>geef obj2 obj1</td>
<td>72</td>
<td>give sy sg</td>
</tr>
</tbody>
</table>

Table 7.8: The four most frequent structure of the Dutch verb 'geven'

structure in two different ways, which in turn results in a reduced amount of data available. In the first case the Dutch *op* 'on' is dependent of the direct object of the verb, while in the second case it depends directly on the verb as a free modifier. A further issue is that our feature set is not able to grasp that *een* (Dutch determiner) is appears obligatorily in this structure. Thus, although our feature set is too large from one perspective, i.e. it retrieves irrelevant verbal structure, from an other viewpoint it is too small to cover all the relevant verbal structures. The exact characterization of the relevant features is a further research issue.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Freq</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>doe beroep=obj1 obj1 op</td>
<td>72</td>
<td>make a proposal for</td>
</tr>
<tr>
<td>doe beroep=obj1 op:mod</td>
<td>39</td>
<td>make a proposal for</td>
</tr>
</tbody>
</table>

Table 7.9: Ambiguous analysis of the Dutch expression *een beroep doen op*

Table 7.10 illustrates how partial dependency trees characterize the verbal structures relying on the selected features. For instance, the structures of the expressions "prendre médicament", "gebruik genees-middel" and "neem-in genees-middel" are identical: the nouns are dependent on the corresponding verbs, and the dependency relation is an object relation. In the case of the expression "start gebruik met van", the noun is dependent on the verb, too, but the dependency relation labeled by the preposition "met" *(with)*. Besides, we also learn that the *met* dependency-relation is a complement-type dependency relation. Moreover, the noun "gebruik" has also a lexically free dependent, this dependency relation is labeled with the preposition "van" *(of) 1

Note that this convention was introduced only

1In the latter case our notation could be interpreted as if the dependency relation *van* did depend on the dependency relation *met:cmp*. Note that this convention was introduced only
7.4 Parallel verbal structures and deep parsed corpus

"der invloed van drug" is analyzed as if "onder invloed" was a compound expression, being in particle relation to the verb, whereas, the noun "drug" is dependent of the verb, as well. The corresponding relation is labeled with the preposition "van" of type complement. Nevertheless, it is important to emphasize that the number of dependency levels is of no importance here, as far as the partial dependency tree determines the surface form of the given expression.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Freq</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>neem-in genees-middel=obj</td>
<td>32</td>
<td>Take medicine</td>
</tr>
<tr>
<td>gebruik genees-middel=obj</td>
<td>21</td>
<td>Use medicine</td>
</tr>
<tr>
<td>start gebruik=met:cmp met:cmp-van</td>
<td>28</td>
<td>Start with the use of</td>
</tr>
<tr>
<td>sta onder-invloed=particle drug=van:cmp</td>
<td>11</td>
<td>Stand under influence of drug</td>
</tr>
</tbody>
</table>

Table 7.10: A sample of Dutch verbal structures

Lexicographically interesting translation candidates In the next step those verbal structures were selected which we want to appear in the dictionary. Note, that it is only in the case of MWE—MWE translations, where we have to decide, whether a translation is worth keeping or not. Both MWE—one-token and one-token—MWE translations form definitively part of the proto-dictionaries.

Recall, that in the previous experiment some hints (e.g. institutionalization) were applied to help the manual selection of lexicographically interesting translation candidates. Unfortunately, the scope of these hints is rather restricted and the rules can not be easily formalized. Moreover, the selection process should be performed fully automatically. Note, that since the dictionaries are bilingual, compositionality should not be conceived as a function of only one language, but interlingually as a function of two languages. On top of that, because the proposed technique claimed to be language independent, it might easily occur that an expression of the source language A is translated compositionally into target language B, while it cannot be translated compositionally into target language C. Therefore, alternative approaches are to be considered.

(1) **Frequency-based approach** One obvious solution is to filter verbal structures on a frequency basis. In this case we start out from the hypothesis that the most for convenience.
7. EXTRACTING PARALLEL VERBAL STRUCTURES

frequent phenomena of a language should be recorded in a dictionary, regardless of their semantic transparency. As frequently occurring expressions are included in the dictionary, this choice is in accordance with the editing principles of encoding dictionaries.

(2) Default translations An other possibility is to come up with a heuristic to automatically filter lexicographically uninteresting complementation patterns relying on default translations[1]. According to our hypothesis an MWE is lexicographically interesting if it has at least ”non-compositional” translation, regardless of the existence of a valid compositional translation. Thus, the notion of compositionality should be grasped by means of data present in the parallel corpus. Regarding the language-dependent nature of the task, it is only after the generation of the whole dictionary that we can decide whether a construction is worth keeping or not.

Let us suppose that the default translation is conceived of as the one that is translated with the highest translational probability. In this case, if the TL MWE is the result of the default translations without altering the corresponding syntactic relations, then the TL translation is not interesting lexicographically.

Example XXXX Dutch translation of ’décision’ is ”beslissing’ and the default English translation is ’decision’, and ’prendre’ is ’nemen’ in Dutch and ’take’ in English

During this experiment the first alternative was applied, i.e. verbal structures were kept on a frequency basis. However, the second approach offers a more insightful solution to the problem of interlingual compositionality, therefore we intend to use that on the long run. Accordingly, only those automatically attained verbal structures were kept which occur at least 5 times of the relevant side of the parallel corpus. This criterion was met by 289 Dutch verb in 5804 different frame types and 391 French verbs with 5987 various frame types.

[1]The basic idea came from Dávid Takács.
7.4 Parallel verbal structures and deep parsed corpus

<table>
<thead>
<tr>
<th>Expression</th>
<th>Dutch</th>
<th>French</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of verb types</td>
<td>289</td>
<td>391</td>
</tr>
<tr>
<td>Number of frame types</td>
<td>5804</td>
<td>5987</td>
</tr>
</tbody>
</table>

Table 7.11: Number of verb and frame types for Dutch and French

7.4.3 The creation of proto-dictionaries

Merging and aligning In the third step verbal structures were recognized in the parallel corpus, merged into one-token units and aligned with GIZA++. In the previous experiment only verbal structures comprising a bound lexical head were considered. The underlying reason was that the input corpus for merging contained neither clause-boundary information nor syntactic annotation, thus, the identification of the relevant prepositions turned out to be impossible. This in turn results in mismatch between verbal frames and their occurrences in the corpus.

The objective of the current experiment is to find translation equivalents to all the frequent complementation patterns. Whereas in the previous experiment 126 French verbal structure occurred altogether 7805 times and 146 Dutch verbal structure appeared 8029 times in the parallel corpus, in the current experiment we had 170,229 matching French verbal structures and 207,610 matching Dutch verbal frames. After merging the occurrences of verbal frames in the corpus, the expressions were treated as one-token expressions and were aligned by means of GIZA++ (Och & Ney (71)).

Proto-dictionaries The proto-dictionaries were based on the frequencies both of the source and target words and the assigned translation probabilities. As the translation probability may take on any value between 0 and 1, at this stage ample useless translation candidates were available. Thus, we have relied on the same filters as before to get rid of the incorrect translation candidates. Table 7.1 is repeated here to demonstrate how an entry of the verbal proto-dictionary looks like.

Parameter setting Based on previous results (Hungarian-Lithuanian, Hungarian-Slovenian) the following general requirements were formulated:

(1) Both source language and target language units has to occur at least 5 times in the parallel corpus. This condition is necessary to have enough data to be able to
7. EXTRACTING PARALLEL VERBAL STRUCTURES

<table>
<thead>
<tr>
<th>Expression_{source}</th>
<th>Expression_{target}</th>
<th>pt</th>
<th>F_s</th>
<th>F_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>prendre médicament=\text{obj}</td>
<td>neem-in genees-middel=\text{obj}</td>
<td>0.377</td>
<td>53</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>gebruik genees-middel=\text{obj}</td>
<td>0.102</td>
<td>53</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>start gebruik=\text{met:cmp met:cmp-van}</td>
<td>0.097</td>
<td>53</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>sta onder-invloed=particle drug=\text{van:cmp}</td>
<td>0.05</td>
<td>53</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 7.12: A sample entry from the French-Dutch verbal proto-dictionary.

reliably estimate the translation probabilities.

(2) In the case of lemmata of similar frequencies a higher translation probability value as threshold results in a higher proportion of useful translation candidates.

(3) In the case of more frequent source lemmata a lower translation probability might yield approximately the same proportion of correct or lexicographically useful translation candidates as a higher translation probability in the case of less frequent lemmata.

7.4.4 Evaluation

At first, we have chosen a parameter setting that presumably results in a high proportion of correct or lexicographically useful translation candidates. If there exists a parameter setting that yields high precision results, the recall can be increased by the refinement of the parameters.

100 translation candidate pairs were selected among the candidate pairs which occur at least 100 times by setting the minimum translation probability to 0.44.

Figure 7.4 represents the distribution of the French-Dutch verbal structure candidates as a function of the logarithmic frequencies of the source words and the corresponding translation probability values. The translation candidates falling within the area of the black rectangular\(^1\) were evaluated.

Evaluation criteria During the evaluation two different aspects were considered:

(1) Whether the translation candidate expression consisted of the right verb.

(2) Whether complete verbal frames were matched.

\(^1\)Frequency is greater or equals to 100 and the translation probability is at least 0.44
7.4 Parallel verbal structures and deep parsed corpus

Figure 7.4: Distribution of French-Dutch translation candidates - Distribution of the verbal structure candidates according to the logarithmic frequency of the source expression and the corresponding translation probability. The range of the evaluation is marked by the black rectangular

Results Out of the 100 evaluated examples 46 structures were perfect translations: That is the translation was a complete verbal structure with the right verb. In the rest of the cases the right verbs were extracted as translations, but any or both of the frames was incomplete. In 24 cases both frames were incomplete, while 21 source verbs and 9 target verbs were retrieved with incomplete frames. The evaluated frames contained mostly only one dependent prevalently an object without a lexical head, but verbs with more than one dependent were also aligned, for example:

<table>
<thead>
<tr>
<th>Expression<sub>source</sub></th>
<th>Expression<sub>target</sub></th>
<th>English translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>avoir besoin=obj1 decpl</td>
<td>hebben obj1 nodig=predc:ADJ</td>
<td>sy needs sg</td>
</tr>
</tbody>
</table>

Table 7.13: Translation equivalents with one dependent and one lexical head

Accordingly, the French expression "avoir besoin de qc" is assigned the Dutch translation "hebben nodig ob".

Increasing the proportion of complete frames The results raised the question of how the proportion of complete frames could be increased among translation pairs.
7. EXTRACTING PARALLEL VERBAL STRUCTURES

A possible solution might be to omit the "incorrect" frames out of the automatically generated frame list by means of some suitable heuristics. If so, we have to decide automatically what counts as an "incorrect" frame. Since our objective is to build general purpose dictionaries, too long frames should be excluded. The intuition behind this is that long frames occur typically in highly specialized languages (e.g. medical or IT texts), which contradicts to our original objective, i.e. to compile general purpose dictionaries.

The longest French frame is of length 24 and occurs 14 times in the corpus. Because the verbal structures were ranked according to their length during the merging process, matching and aligning the too long frames results in sparser data considering the shorter and more general frames.

Figure 7.5 shows the number of French frame types of the same length. It also indicates the number of occurrences for each frame type.

![Figure 7.5: The distribution of French frames](image)

According to Figure 7.5 among the frame of length 8 some are quite frequent, thus, these frames could be worth including into the workflow, whereas the longer ones are rare enough to be rather specific. Nevertheless, manual evaluation of eight-long frames clearly indicated that these are fairly specific, too. The manual evaluation yielded the conclusion that frames of length 5 or less should be included in the workflow.

\[^{1}\text{Recall, that the length of a frame equals to the number of the bound lexical heads plus the number of the dependency labels.}\]

180
7.4 Parallel verbal structures and deep parsed corpus

Evaluation of verb+object structures To verify the hypothesis according to which omitting longer frame decreases the proportion of incomplete frames in the protodictionary, a second evaluation was performed on a different data-set. The list of verbal structures is made up of frames consisting of a verbal lemma and a direct object, regardless if it is lexically bound or not. Verbal structures only with different verbal lemmata or different direct objects were kept separately. Otherwise, the originally different verbal structures were subsumed under the same frame type and the corpus frequencies were recounted.

The evaluation was carried out with the same parameter setting as before. In this case 60% (as opposed to 46%) of the evaluated source lemmata had at least one correct and complete translation. 31% of the source lemmata was assigned only incomplete equivalents, while 9% of the source lemmata had only wrong translations. Our hypothesis proved to be correct since the proportion of the correct but incomplete translations dropped significantly in the second case.

The characterization of a frequent verb The evaluation was performed from an other perspective, too. We have also investigated to what extent a frequently occurring verb is characterized in terms of the number of frames in which it shows up and the number of translations, which are assigned to it.

For doing so, the French verb mettre was given a closer look. 65 different frames were extracted for the 5706 corpus occurrences of mettre. We have selected those translation candidates where both the source and target language expressions occur at least five times and the translation probability is higher or equal to 0.02. The distribution of translation candidate pairs headed by mettre in the source language fall within the black rectangle in Figure 7.6.

The 65 French verbal structures is assigned 132 Dutch verbal frames so that they form 151 translation pairs. The 132 Dutch frames occur 5611 times in the corpus. The French-Dutch translation pairs were manually evaluated. A yes-or-no decision was made on the correctness of the translation. The translation was considered to be right, if there was at least one context in the corpus where the given Dutch frame was a correct translation. Incomplete frames were accepted if they could be completed based on the concordance. 62% of the 151 translation candidates proved to be correct.

Incomplete French and Dutch frames were both marked. Only 10 out of the 65 mettre-frames were not assigned any correct translations, at all. That is, 55 frames—85% of the mettre-frames—was assigned one or more correct translation.
7. EXTRACTING PARALLEL VERBAL STRUCTURES

Figure 7.6: Distribution of the translation candidates - x-axis indicates the logarithmic frequency of the source expression while y-axis indicates the translation probability. The translation candidates for the expressions headed by the verb mettre fall within the black rectangular.

Discussion The results clearly indicate that in the presence of ample empirical data the proposed method is able to supply useful information regarding the verbal structures and their translations to be included in the proto-dictionaries. However, several translation pairs are made up of incomplete frames. In such cases concordance have to be exploited to include complete verbal phrases in the proto-dictionaries. However, it also turned out that a drastic decrease in the length of verbal frames increases the proportion of complete frames in the proto-dictionary.

The problem of data sparsity Generally speaking, the difficulty that should be addressed in the long-run is the data sparsity problem. Sparse data is a consequence of diverse data. To put it more precisely, the too detailed characterization of verbal frames results in too many frames. In this case, less corpus data is available for each of the frames during the alignment process.

Decreasing the number of frames types Therefore, it is necessary to decrease the number of different frames. This can be done in more then one way: First, we may impose an upper limit to the length of verbal structures. Manual evaluation of the frames showed that including maximum 5-long frames in the verb frame list is a
reasonable choice. Secondly, too detailed syntactic characterization of the verbs yields too many frames. Thus, the feature space may be also reduced. This thread of research is part of our future task.

7.5 Conclusion

General framework Our basic motivation was to investigate to what extent it is possible to handle multi-word expressions in the proposed framework, that is, to retrieve parallel verbal expressions from parallel corpora completely automatically. A preprocessing module was introduced (1) to detect monolingual verbal expressions in each side of the parallel corpus (2) to merge each occurrence of the verbal expressions so that they could be treated as one-token units in the following stages of the retrieval process. Instead of extracting aligned phrases directly from word alignment, as it is usual in the statistical machine translation literature, a preprocessing module was introduced, so that we could handle long distance dependencies and syntactically bound (in fact closeXXX) multi-word expressions alike.

Verbal structure The term verbal structure was used to denote the verbal head and its salient complementation pattern. Complementation patterns comprised frequently occurring constituents regardless of their syntactic status, thus complements and adjuncts were both considered. A verbal structure might also consist of lexically bound constituents.

Workflow Accordingly, the workflow comprised three steps:

1. Detection of monolingual verbal expressions in each side of the parallel corpus,
2. Merging each occurrence of the verbal expressions so that they could be treated as one-token units in the following stages,
3. Performing word alignment as in the case of one-token expressions.

Extraction method The verbal structures were extracted completely automatically. The method described in Sass (55) was used. The algorithm is made up of the following steps:

1. The preliminary verbal structures are generated on the basis of all clauses in the corpus.
(2) Every nominal head of these verbal structures is deleted in all possible variations.

(3) The resulting verbal structures are ranked according to their length. Verbal structures occurring less than five times in the corpus are omitted and their frequency is added to the frequency of the first matching verbal structure in the ranked list.

The repeated execution of the last step resulted in a list of the relevant verbal structures.

Basically, the applied technique operates on morphologically disambiguated texts containing both noun phrase and clause-boundary annotation. One important property of the algorithm is language-independency, which makes it particularly suitable for our purposes.

Corpus representation The language independent nature of the extraction method is ensured by the uniform representation of input data, which standardizes various typological aspects of languages. That is, verbal structures were represented as partial dependencies, the nodes standing for lexical items, the edges standing for syntactic functions. The labels on the edges are the syntactic function markers. Beside word order, the extraction method may consider suffixes or prepositions as syntactic function markers, as well. Thus, syntactic function was conceived of in a rather broad sense here, instead of the usual distinction between subjects, objects, complements and adjuncts, the relation marked by a pure suffix is a syntactic function.

Corpus annotation Basically, the morphologically annotated corpora has to contain both clause-boundary and noun phrase annotation. Clause-boundary information is necessary, as it specifies the scope where the elements of the verbal structure are searched for. The head of the noun phrase and its syntactic function marker forms part of the verbal structure. This type of information should be present in a shallow parsed corpus. However, the modifier of a noun or any other constituent within a noun phrase may be an inherent part of the verbal structure, as well. A deep parsed corpus contains such information, too. Two experiment were carried out: Both shallow and deep parsed parallel corpora were used.

Shallow parsed parallel corpus The objective of the first experiment was to prove that such an approach is able to extract parallel verbal structures. Noun phrases and clause-boundaries were detected by means of rather simple and approximative rules. Only a limited set of verbs was considered. The evaluation yielded the conclusion that although the results are promising both precision and recall should be increased.

Deep parsed parallel corpus For doing so, the second experiment was performed
7.5 Conclusion

on the basis of a deep parsed parallel corpus. This time all verbs occurring in the parallel corpus were considered. The evaluation showed that there are "too many" different frame types. This resulted in sparse data during the alignment. Thus, the number of frame types had to be decreased. There are more ways to do that: First, too long frames were omitted, as they are typical of highly specialized languages. Manual evaluation showed that maximally frames of length 5 should be included in the proto-dictionary. Secondly, the deep syntactic analysis present in the corpus makes possible a more intricate description a verbal frames. This sometimes yields non-existent verbals structures that could be subsumed under a more general frame. Thirdly, the syntactic analysis may be ambiguous: The same phenomena might be analyzed in different ways (cf. 7.9), thus uselessly producing two different frame types.
7. EXTRACTING PARALLEL VERBAL STRUCTURES
8

The Dictionary Query System

8.1 Introduction

In the previous chapters it was argued that word alignment on parallel corpora is particularly useful for lexicographic purposes. Beside its cost-efficiency the data-oriented nature of the proposed method is worth mentioning here. Nevertheless, some difficulties also have arisen, for example, it is quite hard to produce completely clean proto-dictionaries of appropriate size, at least for medium-density languages. As a consequence, at the first stage of the research we confined ourselves to provide lexicographers with the most suitable data to facilitate their work instead of creating full-fledged dictionaries for end-users.

Extending the scope of users One natural improvement of our work would be to extend the usability of the generated data, so that it could furnish information even to end-users. Thus, a dictionary query system has been designed and implemented which is able to compensate for the disadvantages and exploit the advantages of the proposed method.

Macrostructure and microstructure Regarding the organization of a dictionary macro- and microstructures can be distinguished. Macrostructure is the headword list the dictionary is made up of, while the microstructure is the structure of the entries. The macrostructures and microstructures of dictionaries widely differs as a function of the target group the dictionary is designed for.

Macro- and microstructures of proto-dictionaries The macrostructure of the
8. THE DICTIONARY QUERY SYSTEM

dictionary is determined by the size and domain of the parallel corpus. Microstructure of
the dictionary is partially determined by the annotation present in the parallel corpus
and the recognized multi-word expressions. The dictionary query system (DQS) also
affects both macro- and microstructure. In the present chapter it will be discussed
how the dictionary query system makes accessible the macro- and microstructures of
proto-dictionaries.

Acknowledgements The work described here was completed with the collaboration
of Dávid Takács, my former colleague and present friend, who not only implemented the
dictionary query system but also had major contribution to the main functionalities of
the dictionary query system.

8.2 What type of information should be ideally included in the dictionary?

Before presenting the DQS we will shortly discuss what type of information should be
ideally included in a dictionary according to Atkins & Rundell (17). Besides, we will also
consider whether the corresponding piece of information can be treated in the proposed
framework.

8.2.1 Lemma headword

Pronunciation This type of information forms definitively not part of the proto-
dictionaries.

Variant form Variant form shows a slight variation of the headword lemma, such as
an alternative spelling (e.g. emphasize or emphasise). Alternatives form might show
up in the proto-dictionaries if the texts the parallel corpus comprises these alternative
word forms, but they will not appear as alternatives within a headword.

Frequency In recent corpus-based dictionaries frequency information is supplied to
give hint on the importance of each headword to the user. Lemma frequencies are
estimated on the basis of large corpora. In the case of proto-dictionaries frequency
information plays a crucial role, not only in the case of headwords (source lemma
frequencies), but also in the case of the translation candidates (translation lemma fre-
quencies). Moreover, proto-dictionaries also indicate the frequencies of the translation
8.2 What type of information should be ideally included in the dictionary?

candidates in terms of translation probabilities.

Inflected form Dictionaries consist of information on the inflected forms of head words, especially in the case of irregular inflection. As most taggers and syntactic analyzers are aware of irregular word forms and link them to their head word this type of information is accessible in the proto-doctionaries. However, at the present stage of research inflectional paradigms are not queriable in the DQS.

8.2.2 Meaning and translation in bilingual dictionaries

Although under different names, Atkins & Rundell [7] list the same translational categories as we discussed in Chapter 3. There we also accepted the view that three out of the four categories form continuous scales rather than being distinct types of translations. Namely, translations are situated somewhere on the cognitive equivalent—translational equivalent scale. Translations also exhibit different amount of explanatory power: The one end of the scale is being merely a contextual translation, which perfectly fits into the given context, but does not describe the source word expression, whereas the other end of the scale is constituted by definitions that provide an exhaustive description on the meaning of source expressions but may not be used to produce smooth translations in the target language. In Chapter 4 we saw how each of these types are treated within the given framework. In what follows, we briefly consider the type of translation equivalents as described in Atkins & Rundell [7].

Direct translation Direct translations correspond to cognitive equivalents: in Chapter 4 we saw that the corpus frequency data along with translation probabilities provide a strong hint where a translation candidate is situated on the direct translation—translational equivalent continuum. For instance, if the translational probability of a translation pair candidate equals to one and corresponding frequencies are the same the SL and TL words are likely to be cognitive equivalents (cf. Section 4.3.2).

Contextual translation As cognitive equivalency is extremely rare and is constrained to certain semantic classes, the majority of SL words could be assigned only a more or less satisfying direct translation. Recall that direct translations may be conceived of in terms of contextual translations: Direct translations are those contextual translations that fit every context. In this case direct and contextual translations form a scale, and a measure may be assigned to each of the translation candidates where they are situated on this scale.
Proto-dictionaries indicate this type of information in terms of SL and TL lemma frequencies and translational probabilities.

Near equivalent In the case of near-equivalents, the SL and TL items are often culturally equivalent. Near equivalents are used when there is no real TL equivalent of the SL headword or phrase. Thus, near equivalency is the same as functional equivalency in Section 3.2.2. In the case of functional equivalency the word-level lexical meaning of an expression does not correspond directly to the word-level meaning, but since the expressions play similar roles in a conversation they are said to be functionally equivalent. For instance, the English expression "A for Abel" is a functional equivalent of the French expression "A comme André". Actually, because it does not rely on lexical meanings, the proposed framework does not distinguish functional equivalents from other type of translations, rather it distills meaning from parallel distributions.

However, although the proposed method rejects the notion of lexical meaning, namely, that words have their meanings (cf. Section 2.3.3), it still undertakes to predict if a translation is straightforward or no (cf. Sections ?? and 8.3.2).

TL gloss As we saw in Section 3.2.2, TL glosses or definitions are at one end of the explanatory power—translational equivalency scale. Definitions comes into play when there is no direct translations or near-equivalents. A TL gloss explains the meaning of the SL expression to the TL user, but is of no use for encoding purposes, or at least it does not produce a smooth translation. As word alignment is based on translated texts giving translation by means of TL glosses is no option for us. However, though it does not form part of the present research, explanatory power may be measured in terms of retrieved synonyms (cf. 4.3.2).

8.2.3 Sense indicators

As Atkins & Rundell (17) puts it:

A ‘sense indicator’ is a component designed to lead people as quickly as possible to the right part of the entry. (They are therefore a special kind of navigation aid.) Sense indicators are rare in monolingual dictionaries for native speakers, who can see from the definitions and examples the various senses of the headword. This is not the case, however, for learners of the language, and the sense indicator is an essential part of entries for learners. There are two main types of sense indicator: specifiers (in monolingual and
8.2 What type of information should be ideally included in the dictionary?

bilingual dictionaries) and collocators (mainly in bilinguals). (p. 214)

Domain labels will be also discussed in this section, as domain labels—if chosen appropriately—may indicate the relevant sense of the headword.

Domain label Domain label specifies the typical domains in which a translation occur. Since the genre of texts is preserved, this information is easily accessible. However, as the basic objective of the present research is the automatic compilation of general domain bilingual dictionaries, we strived to gather general domain texts, mainly of literature. Thus, domain labels are not that informative in our case as it could be if more specific domain texts were included in the parallel corpus.

Specifiers and collocators Specifiers mark sense distinctions in the SL side. They may contain many different types of information, such as superordinates, synonyms, typical modifiers, paraphrases, and so on. Collocators are used to help users to find the best translation. A collocator is a word representing a group of words belonging to the same word class and similar in meaning. Both specifiers and collocators are words from the language of the encoding user, i.e. the source language. For instance, in Figure 8.1 the descriptions of subsenses between brackets are specifiers, whereas indicators of typical subjects are collocators appearing between square brackets.

<table>
<thead>
<tr>
<th>Clear (verb)</th>
<th>I. (become transparent, unclouded)[liquid, sky] s’éclaircir;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>II. (disappear)[smoke, fog, cloud] se dissiper;</td>
</tr>
</tbody>
</table>

Figure 8.1: Specifiers and collocators of the headword *clear* in the Oxford-Hachette French Dictionary (Ormal-Grenon & Pomier (74)).

Since the various SL lemma senses of proto-dictionaries are not specified before the assignment of translations, but through translations, specifiers are not provided.

Considering collocators, typical collocations may serve as collocators. However, as at the present stage of research the detection of parallel collocates has not been completed, this feature is not accessible yet. The only exceptions are French and Dutch verbal structures, where typical objects may serve as collocators.

8.2.4 Grammar

Grammar information should be included in every bilingual dictionary, for it indicates how the TL word or expression should be combined with other words to form gram-
mational or rather idiomatically correct TL sentences.

Word-class marker As part-of-speech categories provide general hints about how words are used and combined with other words they appear in every dictionary.

In the case of proto-dictionaries part-of-speech categories are indicated as subscript of the given lemma. However, it should be kept in mind that part-of-speech categories were tagged completely automatically by means of morphological taggers or syntactic analyzers, thus, wrong part-of-speech categories may occur.

Construction Providing the set of constructions in which a word may appear makes a smoother language use possible than mere part-of-speech information. Thus, a dictionary must contain all the constructions the learner must know in order to use the word flexibly and fluently for four open word classes (verbs, nouns, adjectives and adverbs). The constructions often reflect corpus evidence.

Because the detection of collocations with pre-defined syntactic patterns is a common practice in language technology, the inclusion of such constructions into the proto-dictionaries probably is rather straightforward. At the present stage of research only constructions with syntactic patterns were considered: *Verb* + *object* structures are queriable in the Dutch-French (and vv.) dictionaries. *Adjective* + *noun*, *noun* + *noun* and *adverb* + *verb* structures were included in the Hungarian-English (and vv.), Slovenian-Hungarian (and vv.) and Lithuanian-Hungarian (and vv.) dictionaries without any specialized querying facility. These constructions were extracted following some standard techniques\(^1\) but no detailed evaluation has been performed.

Grammar label Grammar labels are a set of complementing information that is needed beyond word-class markers and constructions to produce grammatical utterances. For English nouns countability and proper noun are commonly used grammar labels. As for verbs, their semantic type might be indicated (activity, accomplishment, achievement, or stative), and in the case of adjectives their predicative or attributive use is usually indicated.

Grammar labels are not available in the proto-dictionaries. Such information in the parallel corpus may be only the result of deep syntactic analysis. Unfortunately, language analysis tools providing such detailed information are usually not available in the case of less resourced languages.

\(^1\)For collocation extraction the UCS tool-kit (Evert (25)) was used, the candidates were filtered on the basis of both MI-score and Z-score.
8.2 What type of information should be ideally included in the dictionary?

8.2.5 Contexts

Multiword expressions Although Atkins & Rundell (77) discuss multiword expressions (eg. idioms, collocations, compounds, phrasal verbs) and constructions separately we do not see the reason for differentiating between them. Thus, in our understanding multiword expressions and constructions refer to the very same phenomena and we don not discuss them separately.

Examples Examples forms important part of learners’ bilingual dictionaries. However, primarily for the reason of limited content the printed versions of dictionaries may contain only a constrained set of examples.

As the problem of limited space does not apply in the case of electronic dictionaries, ample example sentences could be included in such dictionaries. Moreover, in the proposed framework all the example sentences come from corpus texts. Nevertheless, the great amount of examples might render it difficult to the end-users to select the relevant facts about translation.

8.2.6 Vocabulary types

Vocabulary type might be determined by domain labels. As it was previously mentioned, text domains are encoded in the corpus annotation. The proportion of occurrences of translations in different domains are indicated in DQS. However, other types of vocabulary indicators common in usual dictionaries are not present in the database, such as register (formal, informal, very informal), style (literary, newspaper), time (obsolete), attitude (derogative, pejorative, appreciative) and meaning types (literal, metaphorical). Thus, vocabulary types, except for domain labels, are not indicated in the proto-dictionaries.

8.2.7 Usage

Subject-oriented usage note The basic idea behind subject-oriented usage notes is that repeated information should be avoided in dictionaries. So the specific piece of information is described in a subjec-oriented usage note and is cross-referenced from all the relevant headwords. For instance, in the Oxford-Hachette French Dictionary (Ormal-Grenon & Pomier (74)) concerns how to translate into French various construc-
8. THE DICTIONARY QUERY SYSTEM

...tions containing names of countries and continents.

Local usage note Local usage notes specify uncommon or even wrong usages of the headword.

Neither subject-oriented nor local usage notes do form part of the proto-dictionaries. On the one hand, being electronic dictionaries repeated information does not pose a problem for proto-dictionaries, on the other hand, proto-dictionaries are made up of only existing language phenomena, thus cannot contain uses that only rarely or never occur.

8.2.8 Other lemmas

Secondary headword Secondary headwords are subsumed under the headword: Lemmata given secondary headword status are mainly multi-word expressions, such as compounds or phrasal verbs. In proto-dictionaries secondary headwords appear in the French-Dutch dictionaries, when in the case of verb+object structures all the relevant constructions are listed both under the verbal and nominal headword that make up the construction (cf. 8.3.2). This look-up method has to be extended to the other multi-word expressions, too.

Cross-reference As Atkins & Rundell [7] claim:

The cross-reference component tells the user that more information relating to the current headword will be found at the other entry, this can be done in a number of different ways, both directly and indirectly. [...] Every dictionary has its own palette of admissible ways of cross-referring from one entry to another. (p. 238.)

One important novelty of proto-dictionaries is that the cross-referencing system is extended to the reverse dictionaries, too. Therefore, if we are not sure about the exact meaning of a translation candidate, we can easily get to know more about it by clicking on the translation candidate and thus getting the translations of the translation.
8.2.9 Conclusion

We claim that as opposed to usual dictionaries, in the proposed framework new information may be presented in new ways. In the present section we gave an overview of what type of data should be ideally included in a dictionary based on Atkins & Run-dell (7). Some of these are obviously not accessible for the proposed approach and others—may be less straightforward for traditional and corpus-based lexicography—are readily available (frequency ranks among translations, ample example sentences, hints on cross-lingual semantic relations, the proportion of translations over various text genres, reversibility, etc.). In other cases the required information is not readily available but certain heuristics may be developed to predict whether a given feature is present or not (e.g. explanatory power, semantic relation of the target words).

Furthermore, some features were also implemented that are not familiar to the ordinary dictionary users, such as hints on cross-lingual semantic relations or the feature of immediate reversibility. Being parts of the Dictionary Query System, these characteristics will be described in the next section, which is made up of two subsections. The first presents the Dictionary Browser (8.3) while the second discusses the Cut Board (8.4). In what follows, the main features of the Dictionary Browser will be discussed.

8.3 DQS: Dictionary Browser

As earlier has been mentioned, the proposed method has several benefits compared to more traditional approaches:

1. A parallel corpus of appropriate size guarantees that the most relevant translations be included in the dictionary.

2. Based on the translational probabilities it is possible to rank translation candidates ensuring that the most likely used translation variants go first within an entry.

3. All the relevant example sentences from the parallel corpora are easily accessible facilitating the selection of the most appropriate translations from possible translation candidates.

4. The reversible dictionary can be generated easily, thus, it is readily available.
Accordingly, the Dictionary Query System presents some novel features: The innovative representation of the generated bilingual information helps to find the best translation for a specific user in the Dictionary Browser Window. The Section 8.3.1 discusses the basic features of the Dictionary Browser, which is extended with some additional facilities to query two-token expressions described in Section 8.3.2 in more detail.

8.3.1 One-token units

As Figure 8.2 illustrates, the Dictionary Browser displays four different types of information.

1. List of the translation candidates ranked by their translation probabilities. This guarantees that most often used translations come first in the list (from top to bottom). Absolute corpus frequencies are also displayed.
(2) A plot displaying the distribution of the possible translations of the source word according to translation probability and the ratio of corpus frequency between the source word and the corresponding translation candidate.

(3) Word cloud reflecting semantic relations between source and target lemmata. Words in the word cloud vary in two ways. First, their size depends on their translation probabilities: the higher the probability of the target word, the bigger the font size is. Secondly, colours are assigned to target words according to their frequency ratios relative to the source word: less frequent target words are cool-coloured (dark blue and light blue) while more frequent target words are warm-coloured (red, orange). Target words with a frequency close to that of the source word get gray colour.

According to our hypothesis the frequency ratios provide the user with hints about the semantic relations between source and target words which might be particularly important when creating texts in a foreign language. For instance, the Lithuanian lemma karieta has four Hungarian equivalents: "kocsi" (word with general meaning, e.g. 'car', 'railway wagon', 'horse-drown vehicle'), "hintő" ('carriage'), "konflis" ('a horse-drawn vehicle for public hire'), "jármű" ('vehicle'). The various colours of the candidates indicate different semantic relations: the red colour of "kocsi" marks that the meaning of the target word is more general than that of the source word. Conversely, the dark blue colour of "konflis" shows that the meaning of the target word is more special. However, this hypothesis should be tested in the future which makes part of our future work.

(4) Provided example sentences with the source and target words highlighted, displayed by clicking one of the translation candidates.

Moreover, in the bottom of the window appears the number of translation pairs in each text genre present in the parallel corpora (literature, law and software documentation.)

8.3.2 Two-token expressions

Verbal structures of the form verb + object were also uploaded into the query system. As a result, both French and Dutch verbal structures can be queried. Please note, that in this case the verbal structures are constrained to verb + object structures, thus may not contain other essential parts of the verbal structure, such as determiners or
prepositions. Yet, they are of great use when search for multi-word expressions and the correct form of the verbal structures can be inferred from the provided example sentences.

![Figure 8.3: Querying verb + object structures based on objects](image)

As Figure 8.3 shows, the French word *fiche* "sheet" and "plug" has two different Dutch translations: *stekker* "pin contact, male connector" and *fiche* "sheet". Moreover, the dictionary browser also displays the verbs of which the French noun *fiche* is a frequent object complement. The relevant translations and the concordance can be displayed by clicking any of them.

![Figure 8.4: Querying verb + object structures based on verb](image)

All the retrieved bigrams appear in the Dictionary Browser, even if there is no translation with the actual parameter setting. *Verb + object* structures without translations appear struck through. Bigrams are queriable both according to verbs and objects.
Compositionality In the case of the French-Dutch verb + object structures (and v.v.) the proto-dictionaries also indicate whether the translation is compositional or not (cf. Section ??). Less straightforward translations are marked with an exclamation mark. For instance: poser une question (raise a question) is translated as vraag stellen (state a question) in a compositional way, since the most frequent translation of poser is the Dutch verb stellen. As opposed to this, poser une problème is translated as problem hebben, that is, in a non-compositional way.

8.4 DQS: Cut Board

Recall that in Chapter [1] Atkins & Rundell [2] were cited, according to whom:

"A new dictionary designed for electronic as well as print publication – a rare bird in the reference publishing world, because of the cost involved – opens exciting possibilities of totally new information presented in new ways. Key features of such a dictionary will be ‘customizability’ and ‘personalizability’: in this model, the ‘dictionary’ is essentially a collection of lexical resources (possibly multilingual), which users can select from and configure according to their needs.” (p. 239.)

The automatically constructed bilingual databases extended with the dictionary query system at least partially corresponds to what the dictionary of the future is, as one of the key features is ‘customizability’. In fact, the proto-dictionaries may be tailored to suit one’s needs, and this feature makes proto-dictionaries useful for end-users, too.

8.4.1 Trade-off between precision and recall

In Chapters [3] and [4] we saw that the precision of the results can be increased at the cost of lower coverage. Since our basic objective is to produce the best dictionary with the greatest coverage, some suitable heuristics need to be introduced to find the best translation candidates without the loss of too many correct pairs. Therefore, several evaluation rounds were carried out.

Lexicographically useful translation candidates Recall that throughout the manual evaluation we have focused on lexicographically useful translation candidates
instead of perfect translations. The reason behind this is twofold. First, translation synonymy is rare in general language (cf. \[3.2\]), thus other semantic relations, such as hyponymy or hyperonymy were also considered. Secondly, since at this stage of research the word alignment method does not handle multi-words in itself, partial matching between SL and TL translation candidates occur frequently. Nevertheless, the missing parts of multi-word expressions can be manually retrieved form the provided example sentences.

Parameters We considered three parameters when searching for the best translations: The translational probability, the source language lemma frequency and the target language lemma frequency \((p_{tr}, F_s\) and \(F_t\), respectively). The lemma frequency had to be taken into account for at least two reasons.

1. A minimal amount of data was necessary for the word alignment algorithm to be able to estimate the translational probability.

2. In the case of rarely used TL lemmas the alignment algorithm might assign high translational probabilities to incorrect lemma pairs if the source lemma occurs frequently in the corpus and both members of the lemma pair recurrently show up in aligned units.

Results of the first evaluation Results of the first evaluation showed that translation pairs with relatively low frequency and with a relatively high translational probability yielded cc. 85% lexicographically useful translation pairs. Although the precision was rather convincing, it has also turned out that the size of the resulting proto-dictionaries might be a serious bottleneck of the method (Héja \([43]\)). Whereas the targeted size of the dictionaries is between 15,000 and 25,000 entries, the proto-dictionaries comprised only 5,521 Hungarian-Lithuanian and 7,007 French-Dutch translation candidates with the predefined parameters. Accordingly, the coverage of the proto-dictionaries should have been augmented.

Fine-tuning the parameters According to our hypothesis in the case of more frequent source lemmata even lower values of translation probability might yield the same result in terms of precision as in the case of lower frequency source lemmata. Hence, different evaluation domains need to be determined as a function of source lemma frequency. That is:

1. The refinement of the parameters yields approximately the same proportion of correct translation candidates as the basic parameter setting,
8.4 DQS: Cut Board

(2) The refinement of the parameters ensures a greater coverage.

Results of the second evaluation Detailed evaluation of the French-Dutch translation candidates confirmed the first part of our hypothesis. We have chosen a parameter setting in accordance with (1) (see Table 8.1). 6934 French-Dutch translation candidates met the given conditions. 10% of the relevant pairs was manually evaluated. The results are presented in Table 8.1. 'OK' denotes the lexicographically useful translation candidates. For instance, the first evaluation range (1st row of Table 8.1) comprised translation candidates where the source lemma occurs at least 10 times and at most 20 times in the parallel corpus. With these parameters only those pairs were considered where the translation probability was at least 0.4. As the 1st and 2nd rows of Table 8.1 show, using different p_{tr} values as cut-off parameters give similar results (87%), if the two source lemma frequencies also differ.

<table>
<thead>
<tr>
<th>F_s</th>
<th>p_{tr}</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10 \leq LF \leq 20$</td>
<td>$p \geq 0.4$</td>
<td>83%</td>
</tr>
<tr>
<td>$100 \leq LF \leq 200$</td>
<td>$p \geq 0.06$</td>
<td>87%</td>
</tr>
<tr>
<td>$500 \leq LF$</td>
<td>$p \geq 0.02$</td>
<td>87.5%</td>
</tr>
</tbody>
</table>

Table 8.1: Evaluation results of the refined French-Dutch proto-dictionary.

The manual evaluation of the Hungarian-Lithuanian translation candidates yielded the same result. We have used this proto-dictionary to confirm the 2nd part of our hypothesis, i.e. that the refinement of these parameters may increase the size of the proto-dictionary. Table 8.2 presents the results. Expected refers to the expected number of correct translation candidates, estimated on the basis of the evaluation sample. 800 translation candidates were evaluated altogether, 200 from each evaluation domain. As Table 8.2 shows, it is possible to increase the size of the dictionary through refining the parameters: with fine-tuned parameters the estimated number of useful translation candidates was 13,605 instead of 5,521, which is quite close to the targeted size of the proto-dictionaries.

Trade-off between precision and recall However, we should keep in mind when searching for the optimal values for these parameters that while we aim at including as many translation candidates as possible, we also expect the generated resource to be as clean as possible. That is, in the case of proto-dictionaries there is a trade-off between
8. THE DICTIONARY QUERY SYSTEM

<table>
<thead>
<tr>
<th>F_s</th>
<th>p_{tr}</th>
<th>OK</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5 \leq LF < 30$</td>
<td>$p > 0.3$</td>
<td>64%</td>
<td>4,296</td>
</tr>
<tr>
<td>$30 \leq LF < 90$</td>
<td>$p > 0.1$</td>
<td>80%</td>
<td>4,144</td>
</tr>
<tr>
<td>$90 \leq LF < 300$</td>
<td>$p > 0.07$</td>
<td>89%</td>
<td>3,026</td>
</tr>
<tr>
<td>$300 \leq LF$</td>
<td>$p > 0.04$</td>
<td>79%</td>
<td>2,139</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13,605</td>
</tr>
</tbody>
</table>

Table 8.2: Evaluation results of the refined Hungarian-Lithuanian proto-dictionary.

precision and recall: The size of the resulting proto-dictionaries can be increased only at the cost of more incorrect translation candidates.

Usage scenarios This leads us to the notion of usage scenarios: We think that various parameter settings match well different user needs. For instance, when the settings are strict, that is, the minimal frequencies and probabilities are set high, the dictionary will contain less translation pairs, resulting in high precision and relatively low coverage, with only the most frequently used words and their most frequent translations. Such a dictionary is especially useful for a novice language learner. On the other end of the scale professional translators are able to judge whether a translation is correct or not. They might be rather interested in special uses of words, lexicographically useful but not perfect translation candidates, and more subtle cross-language semantic relations. At the same time, they can easily catch wrong translations which are the side-effect of the method looking at the concordance provided along with the translation pairs. This kind of work may be supported by a proto-dictionary with increased recall even at the cost of a lower precision. Thus, the Dictionary Query System should be customizable to support various user needs.

8.4.2 Customization: Cut Board

Proto-dictionaries may be customized on the Cut Board. The Cut Board is an interface where the number of the translation candidates can be determined as a function of the parameters used for filtering (SL and TL lemma frequency, translation probability and quotient of the TL and SL lemma frequencies).
8.4 DQS: Cut Board

(a) Parameter setting with a few translation candidates

(b) Parameter setting with ample translation candidates

Strict parameter setting In Figure 8.5a, the frequency of the source lemma and that of the target lemma has to be at least 100. The threshold for translation probability is set to 0.5. The resulting French-Dutch proto-dictionary included 1352 translation pairs.

Relaxed parameter setting Figure 8.5b shows a relaxed parameter setting resulting in a much greater proto-dictionary. The frequency of the source lemma and that of the target lemma has to be greater or equal to 5. Translation probability has to exceed or be equal to 0.001. With these parameters there are 104,039 translation pairs in the French-Dutch proto-dictionary.

Figure 8.5: - Translation candidates resulting from a relaxed parameter setting
Consequently, the Cut Board determines which translation candidates appear in the Dictionary Browser. In the next step the French verb *aider* is queried in the Dictionary Browser. The different proto-dictionaries (i.e. those depicted in Figure 8.5b and 8.5a) include different set of translation pairs. In the first case, the Dictionary Browser comprising 23 translation candidates, some of which are incorrect ones (cf. Figure 8.5), while in the second case, the Dictionary Browser comprising a sole and correct Dutch translation equivalent (cf. Figure 8.6).

Two different charts are displayed here showing the distribution of all word pairs of

Figure 8.6: Translation candidates resulting from a strict parameter setting

the selected proto-dictionary.

Translation probability as a function of frequency In the previous examples the translation probability was cut only at one certain value. That is, one important finding of the evaluation was not considered, namely that higher frequency source lemmata yield more correct translations even with lower translation probabilities. To exploit the potential in that observation and to be able to maximize the coverage of the proto-dictionaries, the user should be able to set various translation probabilities as a function of the source lemma frequency. These parameters can be set in the following interface:

Figure 8.7: Parameter setting as a function of source lemma frequency
The distribution of the translation pairs corresponding to the parameters in 8.7 is presented in Figure 8.8. Plot 8.8 visualizes the distribution of the logarithmic frequency of the source words and the relevant translation probability for each word pair, selected by the given custom criteria. With these parameters there is 22,545 translation pairs in the French-Dutch dictionary.

Filtering translation pairs with frequencies of different orders Recall that measuring translation relation in terms of conditional probabilities results in high probability values if the frequency of the SL word is high while the frequency of the target word is low and both words recurrently show up in the same sentences. This phenomena was illustrated in Figure 6.3. The Cut Board makes it possible to get rid of such translation pairs. Accordingly, plot 8.9 visualizes the distribution of the logarithmic frequency ratio of the target and source words and the corresponding translation probability for each word pair, selected by the given custom criteria.

Customization of proto-dictionaries Proto-dictionaries are customizable by the following criteria:

1. Maximum and minimum ratio of the relative frequencies of the source and target words (left and right boundary on Plot 8.8).
2. Overall minimum frequency of either the source and the target words (left boundary on Plot 8.9).
3. Overall minimum translation probability (bottom boundary on both plots).
8. THE DICTIONARY QUERY SYSTEM

Figure 8.9: The customized dictionary: the distribution of the candidates. Logarithmic frequency ratio of the source and target words on the \(x \)-axis, translation probability on the \(y \)-axis

(4) Several more cut off intervals can be defined in the space represented by Plot 8.9. Word pairs falling in rectangles given by their left, right and top boundaries are cut off.

After submitting the given parameters the charts are refreshed giving a feedback to the user and the parameters are stored for the session, i.e. the dictionary page shows only word pairs fitting the selected criteria.

8.4.3 Implementation

The online research tool is based on the LAMP web architecture. We use a relational database to store all the data: The multilingual corpus text, sentences and their translations, the word forms and lemmata and all the relations between them. The implementation of such a data structure and the formulation of the queries is straightforward and efficient. The data displayed in the dictionary browser as well as the distributional dataset presented on the charts is selected on-the-fly. The size of the database is linear with the size of the corpus.
8.5 Conclusions and Future Work

In the present chapter the Dictionary Query System has been introduced that has been implemented to make the automatically generated dictionaries valuable resources not only for lexicographers but for end-users, too. Accordingly, the design of the DQS aims at compensating for the shortcomings of the proto-dictionaries and preserve the advances of the technique at the same time. This entails that some information usually present in dictionaries also appear in the proto-dictionaries, while others could be included only in the manual post-editing phase.

Information ideally present in a dictionary
In Section 8.2 we gave an overview on the information ideally present in a dictionary based on Atkins & Rundell (7). We have found that as opposed to usual dictionaries, new information may be presented in new ways in the proposed framework. Some of the relevant data are obviously not accessible for the proposed approach (pronunciation, specifiers, grammar labels, vocabulary types except for domain labels and both types of usage). Others—may be less straightforward for traditional and corpus-based lexicography—are readily available (frequency ranks among translations, ample example sentences, the proportion of translations over various text genres, certain types of multiword-expressions and constructions, word-class markers, etc.). In other cases the required information is not readily available but certain heuristics may be developed to predict whether a given feature is present or not (e.g. explanatory power, certain types of multi-word expressions and constructions). Furthermore, some features were also implemented that are not familiar to the ordinary dictionary users, such as hints on cross-lingual semantic relations or the feature of immediate reversibility.

Dictionary Query System (DQS)
In order to demonstrate the generated proto-dictionaries, we have designed and implemented an online dictionary query system, which exploits the advantages of the data-driven nature of the applied technique. The DQS is made up of two components: In Dictionary Browser the proto-dictionaries can be queried, while the proto-dictionaries can be customized in the Cut Board.

DQS: Dictionary Browser
The DQS provides different visualizations of the possible translations based on their translation probabilities and frequencies, along with their relevant contexts in the corpus. Some new assumptions can be formulated which connect the statistical properties of the translation pairs, e.g. their frequency ratios and the cross-language semantic relations between them. Based on the generated dictionaries such hypotheses may be further examined in the future. At the present stage
8. THE DICTIONARY QUERY SYSTEM

of research one-token units are queriable for all the four language pair we have dealt with. Besides, the French-Dutch (and vv.) verb + object structures can be queried both on the basis of verbs and objects.

DQS: Cut Board One bottleneck of the proposed method is that with the initial parameter setting the coverage of not sufficient. However, based on the evaluation of the French-Dutch and the Lithuanian-Hungarian proto-dictionaries, higher frequency source lemmata yield the same result in terms of precision with lower translation probabilities as less frequent source lemmata with higher translation probabilities. That is, fine-tuning the parameters increase coverage. Nevertheless, the exact parameter-setting depends on the users’ needs: the proto-dictionary for novice language learners should be made up of the most frequent SL and TL lemmata without incorrect translations, whereas professional translators may be interested in intricate translations of less common words. This means that a proto-dictionary for professional translations should contain more translation candidates possibly bad ones, as well. Thus, the different user needs may be formulated in terms of precision and recall: Accordingly, a proto-dictionary for a novice language learner should be a high precision and low coverage dictionary, while a proto-dictionary for a professional translator has to exhibit low precision and low recall.

Because of the different user scenarios we did not strive ourselves to find the ”best” parameter setting. Instead, by presetting different selection criteria on the Cut Board the contents of the dictionaries are customizable to suit various usage scenarios. Consequently, we think that the proto-dictionaries generated by this technique with various settings match well different user needs, and consequently, beside lexicographers, they might also be useful for end users, both for language learners and for professional translators. A possible future work is to further evaluate the dictionaries in real world use cases.
Conclusions and Future Work

9.1 Conclusions

Objective The basic objective of the present PhD thesis was to investigate to what degree language technology methods are able to facilitate the creation of bilingual dictionaries. This question is particularly important in the case of less resourced languages, in the case of which due to the law demand it does not pay off for publishers to invest into the creation of dictionaries.

Main finding Thesis concerns the main finding of the present work:

(I) Although word alignment techniques on parallel corpora are widely used for the purpose of machine translation and until recently it it has been hardly—if at all—used in lexicographic projects, the automatic estimation of translation pairs on the basis of parallel corpora using conditional probabilities is particularly apt for lexicographic purposes for theoretical, practical and economical reasons.

Structure of the dissertation The present dissertation is composed of two main parts:

(A) In the first part, some theoretical issues of bilingual lexicography were considered: Namely, the main characteristics of the SL sense-inventory (Chapter 2) and the translation relation (Chapter 3) were investigated. The additional requirements
9. CONCLUSIONS AND FUTURE WORK

raised by encoding dictionaries were also discussed (Chapter 4).

(B) In the second part of thesis, the theory was put into practice, and two proto-dictionaries were generated for less-resourced language pairs (Chapter 6). For doing so, the techniques were selected that suits most our needs (Chapter 5). In the next step we investigated how MWEs can be treated within the applied framework (Chapter 7). Finally, the Dictionary Query System was described that was designed and implemented to render proto-dictionaries into dictionaries, i.e. into bilingual resources that are useful for end-users, too (Chapter 8).

9.1.1 Research goals

General definition of bilingual dictionaries Our investigations started out from the most general definition of bilingual dictionaries: We supposed that a dictionary was a relation in the mathematical sense. More precisely, if A is the source language (SL) vocabulary and B is the target language (TL) vocabulary, the bilingual dictionary may be conceived of as $\rho \subseteq A \times B$, i.e. it is a set of ordered pairs (a,b) so that $a \in A$ and $b \in B$.

Encoding and decoding dictionaries Moreover, from the very beginning two types of dictionaries were distinguished, and it was claimed that there were essential divergencies in the editing principles of the dictionaries belonging to the different types. Encoding (active) and decoding (passive) dictionaries were told apart. Encoding dictionaries were defined as dictionaries providing speakers of the SL with information on how to express themselves in a foreign language. As opposed to encoding dictionaries, decoding dictionaries were described as helping the speakers of the TL to understand a foreign language, which was the SL in this case.

The ultimate questions On the basis of these definitions the following questions were raised:

(1) What type of entities constitute A and B? How could A and B be characterized?

(2) Which expectations should ρ meet to be able to serve as translation relation?

As throughout this thesis we concentrated on the creation of encoding dictionaries

\footnote{This choice was motivated by the observation that encoding dictionaries are more difficult to compile and they can be converted into decoding dictionaries.}
9.1 Conclusions

we also had to consider which additional requirements such a dictionary had to suffice, namely:

(3) Do the creation of encoding dictionaries impose additional constraints on A and B?

(4) Do the creation of encoding dictionaries impose additional constraints on ρ translation relation?

Accordingly, the main theoretical findings of the present thesis is centered around the above four questions.

Proto-dictionaries After the clarifying the basic issues, the theory was put into practice and a method was selected, which corresponded to the answers to the above questions. Thus, dictionaries were built for two less-resourced language pairs. These resources were designed primarily for lexicographers’ to facilitate their work when creating bilingual dictionaries and were referred to as proto-dictionaries. Three parameters were used to filter lexicographically useless translation candidates: the SL and TL lemma frequencies, and the corresponding conditional probabilities. It was investigated to what extent proto-dictionaries meet the expectations put forward in the first part of the thesis and the relating difficulties were addressed.

Coverage One essential issue that we had to overcome concerned the coverage of the resulting dictionaries. As our scope of interest was centered around less resourced languages, special attention had to be paid to the size of the dictionaries.

Multi-word expressions (MWEs) Though MWEs play an important part in the case of encoding bilingual dictionaries, which primarily aim at enabling the user to produce idiomatically correct TL text, the selected technique does not treat MWEs in itself. Thus, we investigated whether the original method could be complemented with a module that retrieves MWE translation pairs.

Dictionary Query System (DQS) Finally, since we intend to make proto-dictionaries readily available even for end-users, a Dictionary Query System was designed and implemented that is able to take advantage of the novelties of proto-dictionaries and compensate for their shortcomings.
9. CONCLUSIONS AND FUTURE WORK

9.1.2 Summary of the dissertation

The essential theoretical achievement of the present thesis is concisely described in Thesis II:

(II) The automatic estimation of translation pairs on the basis of parallel corpora using conditional probabilities has certain benefits both over traditional and corpus-based lexicography, inasmuch the proposed method is able to define some of the fundamental notions of lexicography in terms of quantifiable corpus data.

In the rest of the present section each chapter will be briefly considered along with the corresponding theses.

9.1.2.1 Chapter 2: Compiling the headword list

What type of entities constitute A and B? How could A and B be characterized?

In this chapter we sought answer to Question (1). In fact, starting out of the hypothesis that bilingual dictionaries are the results of translating A and, thus, the SL vocabulary A has a great impact on the quality of bilingual dictionaries, the main characteristics of A were focused on. Accordingly, traditional, corpus-based and corpus-driven monolingual dictionaries were investigated with regard to their relation to corpus data.

Traditional lexicography We found that the fundamental presumption of traditional lexicographic approaches is that the basic building blocks of language are word form–meaning pairs. This means, that (1) word forms do have meanings and these meanings are fairly stable across different contexts. Moreover, (2) word–meaning pairs are stored in the lexicon and can be assessed by means of introspection. From (1) that follows that contextual information does not play a great role in traditional lexicography. While (2) has two questionable implications. First, everyone has a strong belief that they know exactly the meaning(s) of a word. Secondly, this knowledge is largely alike across the members of a language community. That is, meanings are objective or at least highly intersubjective entities.

Corpus-based lexicography As for corpus based approaches, the great number of relevant projects indicates that this has been the dominant methodology in the field of lexicography recently. In what follows, the basic assumptions shared by the differ-
ent theories are listed. The meaning of words’ is highly dependent on the contexts in which they occur. This view on meanings is compatible with (at least) two interpretations. First, word forms do not have meanings in themselves, but they have meaning potentials. Or alternatively, words tend to be highly polysemious that show up with different meanings in different contexts. In either case, the various meanings can change significantly across different contexts. Because of the increased role of contexts in the description of meanings, introspection in itself is not enough to be able to list the relevant headwords of a dictionary and to provide a sufficient characterization of it. Therefore, the lexicographic intuition should be underpinned by corpus evidence. Moreover, a sound linguistic theory is needed to draw lexicographers’ attention to the lexicographically relevant facts. In addition, for the same purpose, the exploitation of lexical profiling tools turned out to be indispensable, too, as corpus size increased.

Corpus-driven lexicography With regard to the basic assumptions, corpus-driven lexicography was found to be rather similar to corpus-based lexicography. However, data plays a greater role than in corpus-based lexicography, at least as far as corpus-driven techniques are suitable to handle greater amount of data than corpus-based approaches. This is primarily due to the fact that the methodology has changed and unsupervised learning techniques became widely used for natural language processing tasks. The aim of unsupervised learning techniques is to learn hidden structures from unlabeled data. Thus, unsupervised techniques eliminate unarticulated theoretical pre-suppositions present in the labeling itself. However, human intuition cannot be completely excluded: It comes into play again when selecting the investigated phenomenon, coming up with a representation set up, fine-tuning the parameters and throughout the evaluation, as well. By the end of Chapter 2 we found that:

(III) Albeit the general view in lexicography takes form-meaning pairs as the atomic building blocks of dictionaries, it is argued that, if the proposed method is used, word forms may serve as the basic units for bilingual encoding dictionaries. This finding in turn eliminates the second question, as in this case we do not have to address the rather difficult problem of how to characterize meanings of word forms.

9.1.2.2 Chapter 3: The translation phase

Which expectations should ρ meet to be able to serve as translation relation?
9. CONCLUSIONS AND FUTURE WORK

Various types of ρ Chapter 3 focused on translation relation ρ. Based on the literature it was found that the notion of translation relation is inhomogeneous inasmuch several sub-types of it may be distinguished. The scale spans from the perfect translation equivalency, where the corresponding SL and TL expressions are interchangeable in every possible context, to translation equivalents that are fully dependent on the context. Explanatory equivalents (i.e. definitions) were also distinguished, but the idea that explanatory equivalents and translation equivalents form a scale, too, was rejected.

(IV) We have investigated how the symmetry of translation relation can be interpreted. We found that if $\rho \in A \times B$, i.e. if ρ is a relation in the mathematical sense, then the symmetry of translation relation means that ρ is an invertible function mapping from the SL vocabulary A to the TL vocabulary B. It was also found that this definition is consistent with the cases when ”symmetric translation relation” is exploited in practical lexicography, such as when designing reversible dictionaries or when applying the hub-and-spoke model.

Main characteristics of ρ As translational synonymy/cognitive equivalency is rare, translation relation is best conceived of as closeness. This in turn entails that ρ translation relation should be gradual and quantifiable. (i.e. when the translation is an invertible function), the automatically attained translation relation should capture this asymmetry somehow. Note that the gradual, possibly quantifiable notion of translation equivalence is incompatible with the binary view of translation pairs, therefore with the mapping view of translation. We also expect the dictionary to enable the user both to understand the unfamiliar language (cf. decoding dictionaries), and to produce smooth translations (cf. encoding dictionaries).

(V) If translation relation is best to think of as a gradual notion, then we should be able to compare two possible translations of a given SL expression and to select the better one. That is, translation relation should be quantifiable. The strength of the translation equivalence could be measured by the number of contexts in which a TL expression appears as translation. This claim corresponds to the fact that perfect translation equivalents are defined as translation pairs that are interchangeable in every context, while on the other end of the scale, contextual translations appear only in a rather constrained set of contexts.
In our view, instead of the mathematical relation, \(\rho \) translation relation should be conceived of as conditional probability, \(P(b|a) \), which gives an estimation of how many times the occurrences of \(a \in A \) is translated as an occurrence of \(b \in B \) on the basis of sentence aligned parallel corpora. We claim that conditional probability is a suitable mathematical construction to represent and to quantify over translation relation, since, as opposed to mathematical relation, it is able to reflect the gradual nature of translation relation.

On top of that, interpreting translation relation as conditional probability enables the creation of high-quality encoding dictionaries.

9.1.2.3 Chapter 4: Encoding dictionaries

Does the creation of encoding dictionaries impose additional constraints on \(A \) and \(B \)?

Does the creation of encoding dictionaries impose additional constraints on \(\rho \) translation relation?

Encoding dictionaries and inter-annotator agreement: By definition, in an encoding environment we are aware of the meaning of the SL expression and want to find the contextually best translation for it, i.e. the one that produce an idiomatically correct translation when put into TL contexts.

How do we know that we are ”aware of the meaning of the SL expression”? We consider the meaning of an expression known, if most native speakers assign the same meaning to it, when put into sufficiently specified contexts. This task is called word-sense disambiguation (WSD). WSD with a high agreement among annotators presupposes the existence of a neatly characterized sense-inventory.

We found that the neatly characterized sense-inventory should exhibit certain properties to enable the annotators to achieve high agreement on the annotation task. Namely,

(i) First, it has to comprise abundant contextual information that enable annotators to select the appropriate meaning on the basis of explicit distributional information.

(ii) Each SL headword in the sense-inventory should be characterized in a way that each occurrence of the given headword could be clearly assigned to a
9. CONCLUSIONS AND FUTURE WORK

unique meaning. That is, there is no such occurrence that may be assigned to two different meanings.

(iii) It is also presupposed that meanings are non-overlapping entities.

That is, if our presupposition holds, a suitable SL sense-inventory for a high-quality encoding dictionary should be characterized in a way that the various meanings of a word form create a partition in the mathematical sense over the occurrences of that word form.

Partition of meanings over SL word occurrences Although still in an early stage of research, a possible methodology of creating a partition of meanings or sub-meanings over the occurrences of the SL word was also introduced. In this case meaning may be conceived of as labels on partitions over SL word occurrences. Labels are composed of near-synonyms and contexts.

(VIII) Unfortunately, such neatly characterized data-base usually is not available. Therefore, in the absence of such a sense-inventory an alternative way of creating high-quality encoding dictionaries should be found. Another possibility is that we disregard word senses and try to retrieve translations by creating a partition of TL word forms directly over a given SL word form. The conditional probabilities \(P(b_i|a), 1 \leq i \leq n \) create a partition of occurrences of the possible translations \(b_i \) on the set of occurrences of the SL word form \(a \). In this case translation pairs are retrieved that do actually occur in the parallel corpus, that is, where the TL expression actually appears in context. Thus, conceiving of translation relation as conditional probability turned out to be suitable to create high-quality encoding dictionaries.

9.1.2.4 Chapter 5: Selecting the alignment techniques

9.1.2.5 Chapter 6: Proof-of-concept experiments

In this chapter we have verified that the proposed method is able to facilitate the cost-effective creation of bilingual dictionaries.

This methodology meets the expectations put forward in the previous chapters. It is corpus-driven, thus it diminishes the role of intuition in the dictionary building process.
9.1 Conclusions

Economical considerations Once the parallel corpus is available, word alignment on parallel corpus significantly decreases the amount of human labour needed to produce a bilingual dictionary. It turned out that the most time-consuming part of the workflow is the collection and normalization of parallel texts. These observations correspond to Thesis [XIII]

(XIII) Owing to the data-driven nature of the proposed technique, the amount of human effort needed to compile bilingual dictionaries is significantly decreased.

Language independency Since hunalign and GIZA++ are language independent tools, sentence alignment and word alignment are readily re-applicable for any language pair. Thus, proto-dictionaries were generated also for Hungarian-English (and vv.), mainly for evaluation purposes. As put in Thesis [XIV]

(XIV) The extraction method and the DQS are language-independent, thus, only the language dependent resources and tools need to be collected again when preparing dictionaries for new language-pairs.

Reversibility In the presence of the parallel corpus, the creation of the reversed proto-dictionary turned out to be rather straightforward. This is due to the asymmetric nature of the automatically attained translation relation, which is conditional probability. The reversed proto-dictionaries—Lithuanian-Hungarian and Slovenian-Hungarian were generated, too. Hence Thesis [XV] is verified:

(XV) Once the required resources and tools are collected the generation of the reversed dictionary is a straightforward process.

Multiple meanings The method is able to rank polysemous meanings, that is, the automatically retrieved translation probability indicates how the translation space is divided among the various translation candidates, i.e. which is the most frequent translation of the source word. This feature of the applied method was illustrated with the example of the Lithuanian source word *puikus* which was assigned 9 Hungarian translations. This corresponds to Thesis [XI]

(XI) Representing translation relation as conditional probability makes it possible to rank translations according to how likely they are. Presenting translation
9. CONCLUSIONS AND FUTURE WORK

 candidates in such a way is an obvious advance compared to the usual ordering
techniques applied in bilingual dictionaries.

Encoding dictionaries An additional requirement toward the method was that it
should enable the creation of encoding dictionaries. In our view, the automatically
retrieved natural example sentences are of great help when trying to find the translation
that "produces the smoothest translation" among the possible translation candidates.
Obviously, this step is not wholly automatic, but the retrieval of competing translation
candidates and the relevant contexts for each of these candidates may help lexicog-
raphers (and end-users) to focus their attention on the relevant linguistic facts. This
standpoint was underpinned by the example of aiskiai, the Hungarian translations of
which were clearly characterized based on the retrieved contexts.

Evaluation Instead of correct and incorrect translation pairs, the evaluation was
based on lexicographically useful and lexicographically useless translation candidates.
The detailed evaluation of the resulting proto-dictionaries showed that the proportion
of correct translation pairs depends upon the frequency of the source and target lem-
mata and on the automatically attained translation probabilities. Not surprisingly, the
higher the translation probability, the greater the proportion of lexicographically useful
translation candidates. The coverage of the proto-dictionaries was far below of what
was expected. However, refinement of parameters resulted in an increased number of
lexicographically useful translation pairs (cf. Chapter 8).

Uniform XML format The parallel corpora were converted into XML-format with
a simple and uniform (if overlapping) morphological annotation. This conversion made
the following workflow more simple, through enabling the uniform processing of the
various parallel corpora. Moreover, it is easier to generate parallel corpora with var-
ious levels of annotation (containing only lemmata or part-of-speech information is
also included, etc.). This flexibility is especially important when extracting multiword
expression translation candidates, since in this case finding the relevant morphologi-
cal/syntactical information is not straightforward (cf. Chapter 7).

Difficulties Unfortunately, some difficulties have to be addressed, too. First, at the
present state of research the size of the parallel corpus is not great enough to ensure an
appropriate coverage of dictionaries. This problem might have several solutions, either
introducing related methods, such as retrieving translation pairs based on comparable
corpora or fine-tuning the parameters used for filtering. In Chapter 8 this solution will
be examined more closely.
Secondly, the method in its present form enables only the retrieval of one-token translation pairs. Thus, it does not handle collocates or verbal expressions. Since such structures are inherently part of natural languages and are essential for the production of smooth translations, they have to be included in the proto-dictionaries. In Chapter 7 it was investigated to what extent the automatic extraction of translations of verbal structures is possible.

9.1.2.6 Chapter 7: Extracting parallel verbal structures

General framework Our basic motivation was to investigate to what extent it was possible to handle multi-word expressions in the proposed framework, that is, to retrieve parallel verbal expressions from parallel corpora completely automatically. For doing so, a preprocessing module was introduced (1) to detect monolingual verbal expressions in each side of the parallel corpus (2) to merge each occurrence of the verbal expressions so that they could be treated as one-token units in the following stages of the retrieval process. Instead of extracting aligned phrases directly from word alignment, as it is usual in the statistical machine translation literature, a preprocessing module was introduced, so that we could handle long distance dependencies and syntactically bound (in fact close XXX) multi-word expressions alike.

Verbal structure The term verbal structure refers to the verbal head and its salient complementation pattern. Here the complementation pattern comprises frequently occurring constituents regardless of their syntactic status, thus complements and adjuncts are both considered. A verbal structure might also consist of lexically bound constituents.

Workflow Accordingly, the workflow comprised three steps:

(1) Detection of monolingual verbal expressions in each side of the parallel corpus,

(2) Merging each occurrence of the verbal expressions so that they could be treated as one-token units in the following stages,

(3) Performing word alignment as in the case of one-token expressions.

Extraction method The verbal structures were extracted completely automatically. The method described in Sass (85) was used. The algorithm is made up of the following steps:
9. CONCLUSIONS AND FUTURE WORK

(1) The preliminary verbal structures are generated on the basis of all clauses in the corpus.

(2) Every nominal head of these verbal structures is deleted in all possible variations.

(3) The resulting verbal structures are ranked according to their length. Verbal structures occurring less than five times in the corpus are omitted and their frequency is added to the frequency of the first matching verbal structure in the ranked list.

The repeated execution of the last step results in a list of the relevant verbal structures. Basically, the technique operates on morphologically disambiguated texts containing both noun phrase and clause-boundary annotation. One important property of the algorithm is language-independency, which makes it particularly suitable for our purposes.

Corpus representation The language independent nature of the extraction method is ensured by the uniform representation of input data, which standardizes various typological aspects of languages. That is, verbal structures are represented as partial dependencies, the nodes standing for lexical items, the edges standing for syntactic functions. The labels on the edges are the syntactic function markers. Beside word order, the extraction method may consider suffixes or prepositions as syntactic function markers, as well. Thus, syntactic function is conceived of in a rather broad sense here, instead of the usual distinction between subjects, objects, complements and adjuncts, the relation marked by a pure suffix is a syntactic function.

Corpus annotation Basically, the morphologically annotated corpora has to contain both clause-boundary and noun phrase annotation. Clause-boundary information is necessary, as it specifies the scope where the elements of the verbal structure are searched for. The head of the noun phrase and its syntactic function marker forms part of the verbal structure. This type of information is present in a shallow parsed corpus. However, the modifier of a noun or any other constituent within a noun phrase may be an inherent part of the verbal structure. A deep parsed corpus contains such information, too. Two experiment were carried out: Both shallow and deep parsed parallel corpora were used.

Shallow parsed parallel corpus The objective of the first experiment was to prove that such an approach is able to extract parallel verbal structures. Noun phrases and clause-boundaries were detected by means of rather simple and approximative rules. Only a limited set of verbs was considered. The evaluation yielded the conclusion that
9.1 Conclusions

although the results are promising both precision and recall should be increased.

Deep parsed parallel corpus For doing so, the second experiment was performed on the basis of a deep parsed parallel corpus. This time all verbs occurring in the parallel corpus were considered. The evaluation showed that there are “too many” different frame types. This results in sparse data during the alignment. Thus, the number of frame types should be decreased. There are more ways to do that: First, too long frames should be omitted, as they are typical of highly specialized languages. Manual evaluation has shown that maximally frames of length 5 should be included in the proto-dictionary. Secondly, the deep syntactic analysis present in the corpus makes possible a more intricate description a verbal frames. This sometimes yields non-existent verbal structures that should have been subsumed under a more general frame. Thirdly, the syntactic analysis may be ambiguous: The same phenomena might be analyzed in different ways (cf. [7.9]), thus uselessly producing two different frame types.

9.1.2.7 Chapter 8: The Dictionary Query System

The main practical finding of this dissertation is that a suitable dictionary query system (DQS) is capable of rendering proto-dictionaries a useful resource not only for lexicographers but for end-users, too. Therefore, a DQS was designed and implemented that displays some novel features compared to traditional dictionaries. The practical results of the present thesis concern the novelties of the dictionary query system.

Information ideally present in a dictionary In Section 5.2 we gave an overview on the information ideally present in a dictionary based on Atkins & Rundell (7). It was found that as opposed to usual dictionaries, new information may be presented in new ways in the proposed framework. Some of the relevant data are obviously not accessible for the proposed approach (eg. pronunciation). Others—may be less straightforward for traditional and corpus-based lexicography—are readily available (eg. frequency ranks among translations or ample example sentences). In other cases the required information is not readily available but certain heuristics may be developed to predict whether a given feature is present or not (e.g. explanatory power, certain types of multi-word expressions and constructions). Furthermore, some features were also implemented that are not familiar to the ordinary dictionary users, such as hints on cross-lingual semantic relations or the feature of immediate reversibility.

Dictionary Query System (DQS) In order to demonstrate the generated proto-
9. CONCLUSIONS AND FUTURE WORK

dictionaries, we have designed and implemented an online dictionary query system, which exploits the advantages of the data-driven nature of the applied technique. The DQS is made up of two components: In Dictionary Browser the proto-dictionaries can be queried, while the proto-dictionaries can be customized in the Cut Board.

DQS: Dictionary Browser The DQS provides different visualizations of the possible translations based on their translation probabilities and frequencies, along with their relevant contexts in the corpus. Some new assumptions can be formulated which connect the statistical properties of the translation pairs, e.g. their frequency ratios and the cross-language semantic relations between them. Based on the generated dictionaries such hypotheses may be further examined in the future.

(XII) XXXXDQS: cross-lingual semantic relations (cross-lingual synonymy, hypo-, hyperonymy, compositionality)

At the present stage of research one-token units are queriable for all the four language pair we have dealt with. Besides, the French-Dutch (and vv.) verb + object structures can be queried both on the basis of verbs and objects.

DQS: Cut Board One bottleneck of the proposed method is that with the initial parameter setting the coverage of not sufficient. However, based on the evaluation of the French-Dutch and the Lithuanian-Hungarian proto-dictionaries higher frequency source lemmata yield the same result in terms of precision with lower translation probabilities as less frequent source lemmata with higher translation probabilities. That is, fine-tuning the parameters increase coverage. This observation corresponds to Thesis IX.

(IX) We found that a cascaded filtering technique significantly increases the coverage of the resulting proto-dictionaries: In the case of more frequent lemmata even lower values of conditional probabilities may yield correct translations. Hence, fine-tuning the parameters results in a bigger proto-dictionary.

Nevertheless, the exact parameter-setting depends on the users’ needs: the proto-dictionary for novice language learners should be made up of the most frequent SL and TL lemmata without incorrect translations, whereas professional translators may be interested in intricate translations of less common words. This means that a proto-dictionary for professional translations should contain more translation candidates possibly bad ones, as well. Thus, the different user needs may be formulated in terms
of precision and recall: Accordingly, a proto-dictionary for a novice language learner should be a high precision and low coverage dictionary, while a proto-dictionary for a professional translator has to exhibit low precision and low recall.

Because of the different user scenarios we did not strive ourselves to find the "best" parameter setting. Instead, by presetting different selection criteria on the Cut Board the contents of the dictionaries are customizable to suit various usage scenarios.

Consequently, we think that the proto-dictionaries generated by this technique with various settings match well different user needs, and consequently, beside lexicographers, they might also be useful for end users, both for language learners and for professional translators. A possible future work is to further evaluate the dictionaries in real world use cases. In our view customizability is a key feature that may increase the coverage of dictionaries.

(X) The most important novelty of DQS is that it is customizable. That is, the user can select the sub-part of the proto-dictionary that suits most their needs. We think that various parameter settings match well different user needs. Various user may span from novice language learners to professional translators. Keeping the most frequently occurring translation pairs results in a low-coverage but high-precision proto-dictionary, which are appropriate for novice language learners. On the other end of the scale, selecting more relaxed parameters generates a proto-dictionary with a greater coverage but a lower precision. Such a proto-dictionary may suit the needs of professional translators who may be interested in special uses of words, in lexicographically useful but not perfect translation candidates. At the same time, they can easily catch wrong translations, therefore, low precision does not pose a problem for them. Thus, the customizability feature of the Dictionary Query System supports various user scenarios.

9.2 Future Work

Our most important future tasks consist in increasing the coverage of the dictionaries, customization and finding translations for collocations.

Increasing coverage First, one obvious way to increase the size of the protodictionaries is to augment the size of the parallel corpora. For this purpose, web crawlers could be used to build parallel corpora automatically.
An alternative way to include more translation pairs into the proto-dictionaries is to complement the automatically compiled proto-dictionaries with translation pairs extracted from monolingual corpora, which are made up of several order greater amount of texts than parallel corpora. For doing so, the clique-based automatic synonymy detection method (cf. 2.3.3.3) should be improved.

Moreover, instead of the cascaded evaluation technique a curve should be applied to filter out improper results. The parameters of the curve could be learnt by means of some suitable machine learning algorithm, such as logistic regression.

Customization Applying predefined cut-off curves so that users could select the one that suits best their needs, i.e. the one with the best precision-recall trade-off for their needs.

Predefined sets of vocabularies of different sizes should be taken into consideration during customization.

Collocations As our results showed proto-dictionaries consisting of collocation pairs yielded worse results than that of comprising one-token units. However, collocations play a great role, especially in the case of encoding dictionaries, thus, all the relevant parallel sentences should be queriable in which the SL collocation occur.
References

REFERENCES

228
Declaration

I herewith declare that I have produced this paper without the prohibited assistance of third parties and without making use of aids other than those specified; notions taken over directly or indirectly from other sources have been identified as such. This paper has not previously been presented in identical or similar form to any other Hungarian or foreign examination board.

The thesis work was conducted from 2008 to 2014 under the supervision of Tamás Váradi at Dept. of Theoretical Linguistics, Eötvös Loránd University.

Budapest,