From Conceptual Model to Data Model in Multimedia & Multimodal Corpus Integration

The Institute of Linguistics
The Chinese Academy of Social Sciences

Yeuguo.gu@gmail.com
zhyongwei@qq.com
Main Headings

• What is a multimedia corpus?
• What is a multimodal corpus?
• An introduction to Spoken Chinese Corpus of Situated Discourse (SCCSD for short)
• How to do modeling the real-life activity recorded in multimedia & multimodal corpora
• Two application examples: two research projects which we are undergoing based on SCCSD
What is a multimedia corpus?

• Corpus
 – A collection of writings, conversations, speeches, etc., that people use to study and describe a language

• In view of media, the content of a corpus can be recorded by orthographic texts, audio streams, static images, video streams and other media files.

• A corpus which contains orthographic texts, audio files, static images, video files and other media files can be regarded as a multimedia corpus.
What is a multimodal corpus?

- We communicate not only via verbal language, but also through our use of intonation, gaze, hand gestures, body gestures, and facial expressions. (Gibbon D, Mertins I, Moore R. 2000)
- Each modality is one way of communication between humans.
- Communication between humans uses many modalities.
- A corpus which is annotated by more than one communicate modality can be regarded as a multimodal corpus.
- Real-life experiences of language use is Total Saturated Experience (TSE for short)
Real-life experiences of language use

Capturing devices
- Analog sound stream
- Digital sound stream

Analog/digital
- Analog sound & image streams
- Digital sound & image streams

Playback access to data
- Audio media file
- Digitalized acoustic streams

Multimodal texts
- Digitalized orthographic text
- Discretized acoustic text

Segmenting/annotating
- Segmented & annotated texts
- Discretized image text

cannot be shown here without destroying it

○ Total Saturated Experience (TSE)
○ Total Saturated Signification (TSS)

Experience-oriented theorization: natural multimodality as the base of theory construction

Process-oriented theorization: dialogic as the base of theory construction

Product-oriented theorization: symbolic as the base of theory construction

reduced and transformed to acoustic record
reduced and transformed to acoustic & visually observable record
reduced and transformed to orthographic symbols

linguistic object of analysis: orthographic word and sentence as two basic units
An introduction to SCCSD

• Spoken Chinese Corpus of Situated Discourse
 – SCCSD for short
 – Gu Yueguo’s group has spent more than 20 years on building SCCSD
 – It was first trialed in 1993
 – It was started from 1998 until today
 – Contains 1,000 hours audio records (WAV format, stored in 1,000 CDs);
 – Contains 1,000 hours video records (MPG format, stored in 1,000 DVDs)
 – More than 18 million words transcription
The architecture of SCCSD

Major activities of organization

Societal discourse

activities common to organization

Spoken Chinese Corpus of Situated Discourse

special discourse

familial discourse

family discourse in a metropolis

discourse of government, Parties and social organizations
business discourse
educational and academic discourse
legal and mediatory discourse
mass media discourse
discourse of medicine and health
discourse of sports
political discourse
public service discourse
public welfare discourse
religious and superstitious discourse

administrative discourse
banquet discourse
discourse of celebration and ceremony
discourse of entertainment and leisure
office discourse
political study discourse
telephone discourse

pathological discourse
criminal discourse
military discourse
Miscellaneous

family of high-ranking officials
family of entrepreneurs
family of businessmen
Family of academics
Family of white collar
Family of blue collar
Family of suburb farmers
Family of immigrant labour
Research Methodology

• In View of Multimodal corpus Research, we use simulative modeling as our research methodology

• Two Questions:
 – What is a model?
 – What is Simulative modeling?
What is a model?

- Model
 - Productive model
 - The object doesn’t exist;
 - From a concept to a product;
 - What it should be;
 - What function should it has;
 - Simulative model
 - There exists an object;
 - We want to talk about it;
 - We want to understand it;
 - We want to handle it;
What is a model?

- What’s the difference between the productive model and the simulative model?
 - The productive model: to model an object that does not exist at the time of modeling;
 - The simulative model: to model an object or phenomenon that exists already at the time of modeling
Productive model

Simulative model
In our research project

• we are concerned with simulative modeling;
• the object or phenomenon already exists.
• Take, for example, Alzheimer’s disease patients’ discourse.
• If it is the phenomenon we want to study by way of analyzing it, we should use simulative modeling as our research methodology.
Simulative modeling

– Three steps:
 • conceptual modeling
 • data modeling
 • Implementation and verification
Conceptual modeling

• Basic Principle: Multiple-perspective
• It is impossible to describe the whole activity at one time.
• Each perspective represents a particular view of the activity what we are concerned at one time.
• Multiple-perspective may simulate the whole view of the real-life activity
Multiple-perspective

There is statue standing on a stone.

- The linguistic behavior is modeled from a range of perspectives
The conceptual model of real-life social activity

Yueguo Gu 2009:453-6
Data modeling

• What does Data modeling do?
 – Build the data model according to conceptual model.
 – Convert the understanding of the phenomenon (Conceptual model of real-life activity) to data which can be stored in computer and can be used to retrieval and do statistics.

• Basic Principle: Multiple-layer (According to Multiple-perspective)
 – The relationship of perspectives and layers is not only one-to-one mapping, but also one to multi mapping.
Processing model of multimedia corpus

• Use a hierarchical processing model to process multimedia files.
• Generally, the processing model of multimedia corpus can be divided into the bottom layer, middle layer and top layer.
• Among the three layers, the bottom layer is closely related to the computer hardware, so the computer processing is relatively easy.
• The top layer is closely related to the advanced semantics and artistic appreciation, and the computer processing is the most difficult in this part.
Processing model of multimedia corpus

• The middle layer consists of many sub-layers; from the bottom up, the difficulties of conducting the computer processing to each sub-layer increase in sequence, and more and more manual interventions are needed when conducting the corpus segmentation and annotation.

• Different medias have different processing models which can instruct the procedure of processing multimedia data
Take Static Image as An Example

• The bottom layer of the processing model contains hardware layer, encoding layer and physical property layer.

• The middle layer of the processing model contains feature layer, structure layer, structure annotation layer, logic property layer and simple content layer.

• The top layer of the processing model contains content layer and artistic layer.
Hardware Layer & Encoding Layer

• Hardware layer and encoding layer concern
 – how hardware devices capture the multimedia data
 – how to store the multimedia data
 – How to show the multimedia data
• We don’t concern much about hardware layer and encoding layer
Physical Property Layer

• Describe properties of the media files which are generated by the media file capture devices. (Camera, recorder etc.)

• Take documentary photography (static image) as an example
 – Camera write date and time information, manufacturer information, exposure time, ISO speed information to static image
 – Exif is an standard to record these data, and almost all camera manufacturers use it. (Besides Exif standard, there are also other related standards: XMP、IPTC、JFIF、TIFF)
 – Computer can view and edit these data easily.
<table>
<thead>
<tr>
<th>File</th>
<th>Bit depth</th>
<th>Width</th>
<th>Horizontal resolution</th>
<th>Height</th>
<th>Type</th>
<th>EXIF version</th>
<th>White balance</th>
<th>Orientation</th>
<th>Max aperture</th>
<th>ISO speed</th>
<th>Focal length</th>
</tr>
</thead>
<tbody>
<tr>
<td>191.JPG</td>
<td>24</td>
<td>4000 像素</td>
<td>180 dpi</td>
<td>3000 像素</td>
<td>JPEG 图像</td>
<td>0220</td>
<td>自动</td>
<td>正常</td>
<td>2.96875</td>
<td>ISO-800</td>
<td>8 毫米</td>
</tr>
<tr>
<td>192.JPG</td>
<td>24</td>
<td>4000 像素</td>
<td>180 dpi</td>
<td>3000 像素</td>
<td>JPEG 图像</td>
<td>0220</td>
<td>自动</td>
<td>正常</td>
<td>2.96875</td>
<td>ISO-500</td>
<td>8 毫米</td>
</tr>
<tr>
<td>193.JPG</td>
<td>24</td>
<td>4000 像素</td>
<td>180 dpi</td>
<td>3000 像素</td>
<td>JPEG 图像</td>
<td>0220</td>
<td>自动</td>
<td>正常</td>
<td>5.0625</td>
<td>ISO-800</td>
<td>28 毫米</td>
</tr>
<tr>
<td>194.JPG</td>
<td>24</td>
<td>4000 像素</td>
<td>180 dpi</td>
<td>3000 像素</td>
<td>JPEG 图像</td>
<td>0220</td>
<td>自动</td>
<td>正常</td>
<td>5.0625</td>
<td>ISO-800</td>
<td>28 毫米</td>
</tr>
<tr>
<td>195.JPG</td>
<td>24</td>
<td>4000 像素</td>
<td>180 dpi</td>
<td>3000 像素</td>
<td>JPEG 图像</td>
<td>0220</td>
<td>自动</td>
<td>正常</td>
<td>4.65625</td>
<td>ISO-800</td>
<td>23 毫米</td>
</tr>
<tr>
<td>196.JPG</td>
<td>24</td>
<td>4000 像素</td>
<td>180 dpi</td>
<td>3000 像素</td>
<td>JPEG 图像</td>
<td>0220</td>
<td>自动</td>
<td>正常</td>
<td>4.65625</td>
<td>ISO-800</td>
<td>28 毫米</td>
</tr>
<tr>
<td>197.JPG</td>
<td>24</td>
<td>4000 像素</td>
<td>180 dpi</td>
<td>3000 像素</td>
<td>JPEG 图像</td>
<td>0220</td>
<td>自动</td>
<td>正常</td>
<td>4.65625</td>
<td>ISO-800</td>
<td>23 毫米</td>
</tr>
<tr>
<td>198.JPG</td>
<td>24</td>
<td>4000 像素</td>
<td>180 dpi</td>
<td>3000 像素</td>
<td>JPEG 图像</td>
<td>0220</td>
<td>自动</td>
<td>正常</td>
<td>4</td>
<td>ISO-250</td>
<td>14 毫米</td>
</tr>
<tr>
<td>199.JPG</td>
<td>24</td>
<td>4000 像素</td>
<td>180 dpi</td>
<td>3000 像素</td>
<td>JPEG 图像</td>
<td>0220</td>
<td>自动</td>
<td>正常</td>
<td>4.65625</td>
<td>ISO-800</td>
<td>23 毫米</td>
</tr>
<tr>
<td>200.JPG</td>
<td>24</td>
<td>4000 像素</td>
<td>180 dpi</td>
<td>3000 像素</td>
<td>JPEG 图像</td>
<td>0220</td>
<td>自动</td>
<td>正常</td>
<td>4.65625</td>
<td>ISO-800</td>
<td>23 毫米</td>
</tr>
<tr>
<td>201.JPG</td>
<td>24</td>
<td>4000 像素</td>
<td>180 dpi</td>
<td>3000 像素</td>
<td>JPEG 图像</td>
<td>0220</td>
<td>自动</td>
<td>正常</td>
<td>4</td>
<td>ISO-800</td>
<td>15 毫米</td>
</tr>
<tr>
<td>202.JPG</td>
<td>24</td>
<td>4000 像素</td>
<td>180 dpi</td>
<td>3000 像素</td>
<td>JPEG 图像</td>
<td>0220</td>
<td>自动</td>
<td>正常</td>
<td>4.65625</td>
<td>ISO-800</td>
<td>23 毫米</td>
</tr>
<tr>
<td>203.JPG</td>
<td>24</td>
<td>4000 像素</td>
<td>180 dpi</td>
<td>3000 像素</td>
<td>JPEG 图像</td>
<td>0220</td>
<td>自动</td>
<td>正常</td>
<td>4.65625</td>
<td>ISO-800</td>
<td>23 毫米</td>
</tr>
<tr>
<td>204.JPG</td>
<td>24</td>
<td>4000 像素</td>
<td>180 dpi</td>
<td>3000 像素</td>
<td>JPEG 图像</td>
<td>0220</td>
<td>自动</td>
<td>正常</td>
<td>4.65625</td>
<td>ISO-800</td>
<td>23 毫米</td>
</tr>
<tr>
<td>207.JPG</td>
<td>24</td>
<td>4000 像素</td>
<td>180 dpi</td>
<td>3000 像素</td>
<td>JPEG 图像</td>
<td>0220</td>
<td>自动</td>
<td>正常</td>
<td>4</td>
<td>ISO-800</td>
<td>15 毫米</td>
</tr>
<tr>
<td>208.JPG</td>
<td>24</td>
<td>4000 像素</td>
<td>180 dpi</td>
<td>3000 像素</td>
<td>JPEG 图像</td>
<td>0220</td>
<td>自动</td>
<td>正常</td>
<td>4</td>
<td>ISO-800</td>
<td>15 毫米</td>
</tr>
<tr>
<td>209.JPG</td>
<td>24</td>
<td>4000 像素</td>
<td>180 dpi</td>
<td>3000 像素</td>
<td>JPEG 图像</td>
<td>0220</td>
<td>自动</td>
<td>正常</td>
<td>4</td>
<td>ISO-800</td>
<td>16 毫米</td>
</tr>
<tr>
<td>210.JPG</td>
<td>24</td>
<td>4000 像素</td>
<td>180 dpi</td>
<td>3000 像素</td>
<td>JPEG 图像</td>
<td>0220</td>
<td>自动</td>
<td>正常</td>
<td>4.34375</td>
<td>ISO-800</td>
<td>20 毫米</td>
</tr>
<tr>
<td>211.JPG</td>
<td>24</td>
<td>4000 像素</td>
<td>180 dpi</td>
<td>3000 像素</td>
<td>JPEG 图像</td>
<td>0220</td>
<td>自动</td>
<td>正常</td>
<td>4</td>
<td>ISO-800</td>
<td>14 毫米</td>
</tr>
</tbody>
</table>
Feature Layer

• Extract features from the multimedia files
• Written texts: Term Frequency (TF), Document Frequency (DF), TFIDF=TF/DF, etc.
• Static Images: Color, Texture, Shape, Scale-Invariant Feature Transform (SIFT), etc.
• Audio streams: Waveform, Power, Spectrum Envelope, Linear Predictive Cepstral Coefficient (LPCC), Mel Frequency Cepstral Coefficients (MFCC), etc.
• Video streams: Color, Texture, Shape, Motion, etc.
• Computer can extract most of the features from multimedia files
Structure Layer

• Describe the structure of the media file.
• Segmentation is the basic operation.
• Written texts: paragraphs, sentences, phrases, words, characters.
• Audio streams: phonemes, syllables, discourse units, turns and other meaningful segments of audio streams.
Structure Layer

• Static Images:

Original Image
Segment the Image using Specific Graph

Circular, rectangular ellipse, and polygon.

Segment the Image According to the Boundary of The Object In the Image

• Video Streams:

In Time Dimension

Video
Scenes
Shots
Frames

In Space Dimension

the purpose and degree of granularity

Video streams can also be segmented in time and space dimension simultaneously.
Structure Annotation Layer

- Structure annotation layer contains annotations of the segmentation

\[A = At | As | Ats | An \]

- \(At = \langle \text{start, end, Avalue} \rangle \)
- \(An = \langle \text{key, Avalue} \rangle \)
- \(As = \langle \text{space_description, Avalue} \rangle \)
- \(Ats = \langle \text{start, end, space_description, Avalue} \rangle \)
- \(Avalue = Avalue, \)
- \(Avalue | \text{free_text} | \text{structured_text} | \text{keyword_text} | \text{dependency_text} | \text{enum_text} \)

- **A**: Annotation
- **At**: Annotation with time description
- **As**: Annotation with space description
- **Ats**: Annotation with time and space description
- **An**: Annotation without time or space description
- **start**: The start media time of the segment
- **end**: The end media time of the segment
- **Avalue**: Annotation value
- **space_description**: Space Description

free_text: Annotation in free text format
structured_text: Annotation in structured text format
keyword_text: Annotation in keyword text format
dependency_text: Annotation in dependency text format
enum_text: Annotation value can be chosen in a set
| or
Annotations can be categorized into tiers.

\[T = T_t | T_s | T_{ts} | T_n \]

\[T_t = \langle \{A_t\}, \text{type}, \{A_n\} \rangle \]

\[T_s = \langle \{A_s\}, \text{type}, \{A_n\} \rangle \]

\[T_{ts} = \langle \{A_{ts}\}, \text{type}, \{A_n\} \rangle \]

\[T_n = \langle \{A_n\}, \text{type} \rangle \]

\(R = \langle \{T\}, \{A_n\} \rangle \)

R: The integration result

\(T: \) Tier, Layer

\(T_t: \) Tier with time description

\(T_s: \) Tier with space description

\(T_{ts}: \) Tier with time description and space description

\(T_n: \) Tier without time or space description

\(A_t: \) Annotation with time description

\(A_s: \) Annotation with space description

\(A_{ts}: \) Annotation with time and space description

\(A_n: \) Annotation without time or space description

\(\text{type}: \) Category which this tier belongs to

\(\{X\}: \) Repeat X for many times
Logic Property Layer

• Describe properties of the media file which are **not** generated by the media file capture devices. (Camera, recorder etc.)

• For example:
 – Who generate the media file
 – The copyright of the media file
 – The usage information of the media file etc.
Simple Content Layer & Content Layer

• We separate content layer into a simple one and a normal one.
• In simple content layer, we usually describe the content of the media through WHO, WHAT, WHERE, WHEN, WHY and HOW.
• If there are more information need to describe, we describe them in (normal) content layer.
• Both simple content layer and content layer need human work to annotate.
Artistic Layer

• Artistic layer describes the deeper understanding of the media.
• Different people may have different understandings of the media.
• So, it is unpractical to let computer to describe this layer.
Synchronization & Integration

- There are several software using different meta-language to synchronize and integrate different kinds of multimedia files: ELAN, Anvil, C-BAS, EXMARaLDA Editor, MacVisSTa, Transformer, Theme, etc.
- We use MPEG-7 as meta-language to describe different layers’ content.
- MPEG-7, formally known as Multimedia Content Description Interface which is an international standard
Multi-layered segmentation and annotation
Simulative modeling

– Three steps:
 • conceptual modeling
 • data modeling
 • Implementation and verification
Implementation and Verification

AV streams

*Audio Segmentation Program

Audio Segment

Audio Segmentation Result

ELAN

*Audio Segment and Align Segmentation with Transcription

*Generate EAF

Audio Transcription

EAF File

AudioVisual Segmentation and Annotation Result (EAF)

*Convert EAF to MPEG-7

3MDS (MPEG-7 Standard)

*Convert VideoAnnEx (MPEG-7) to EAF Program

Video Segmentation Result (MPEG-7 Standard)

*Convert VideoAnnEx (MPEG-7) to 3MDS (MPEG-7) Program

Video Segmentation

Video Segment

Audio Visual (AV)

EAF : ELAN Annotation Format

3MDS : Our Software Platform

Frame

*Key Frame Extraction

Key Frame Segmentation

Static Image

*Convert PhotoStuff RDF to MPEG-7 Program

Image Segmentation Result (RDF)

Static Image Segmentation

Text Segmentation, Annotation and Activity Annotation

AV : AudioVisual

Frame

*Key Frame Extraction

Key Frame Segmentation

Static Image

*Convert PhotoStuff RDF to MPEG-7 Program

Image Segmentation Result (RDF)

Static Image Segmentation

Text Segmentation, Annotation and Activity Annotation

AV : AudioVisual

EAF : ELAN Annotation Format

3MDS : Our Software Platform
Implementation and Verification
Application Example (1)

- We have set up a Linguistic Multimodal Analysis Laboratory with the Hong Kong Polytechnic University.
- The undergoing project is analyzing the differences between Alzheimer's disease patients' discourse and normal people's discourse.
Conceptual modeling

• Modeling your understanding of the phenomenon;

• Understanding: Dementia affects every aspects of a person’s life;

• Gu’s (2013) model of human agency
The whole man is modeled with a set of behaviors
Self-identity lost

This video was captured by a student of professor Gu Yueguo
A tier each for all perspectives, and parameters
Contrasted parameters

Normal ageing

- Verbal behavior (audio + video)
 a) Articulation
 b) Fluency
 c) Pragmatics
 d) Discourse coherence
- Paralinguistic behavior (video)
 a) Hand gestures
- Doing-behavior (video)
 a) Orientation
 b) Self-caring
 c) Household chores
- Emotional state (audio + video)

Alzheimer’s disease

The 2nd Symposium on Healthcare Communication, HKPU
Gu Yueguo
Our hope to contribute

1. Mental state examination is clinically handled through interviews;

2. Information for many parameters depends on the clinician’s intuitive judgments made on the spot, and under the time pressure;

3. We use audio-, video-taped data and can look at the data, assisted by the tools such as Praat and Elan, in the way as physicians look at their data through microscopes.
Ultimate Goal

• Train robots fixed with audio and video sensors to do automatic analysis of audio, and video streams;
• The automated analyzed data helps the clinician make better informed diagnosis.
Application Example (2)

• Intuitively
 – What is said （言）
 • is connected with
 – what is thought of （思）
 • is connected with
 – what is felt （情）
 • is connected with
 – What is embodied （貌）
The STFE-Match Assumption

• There is a perfect match between what is said, what is thought of, what is felt, and what is embodied i.e.

• the STFE-Match Assumption;

• The Assumption is generally upheld in child discourse, but subject to flouting and manipulating in adult discourse.
• The Integrity Person is modeled from four perspectives (i.e., STFE) in three phases, conceptual modeling, data modeling and implementation/critical evaluation.

• The data, mainly from audio and video recordings of everyday activities, are segmented and annotated using ELAN.
• We have collected a lot of audio and video recordings of prisoners.
• It will be helpful to judge whether a person is lying or not.
• We think there must be some other fields in which multimedia & multimodal corpus can be used.

• Yueguo G. 2012. A conceptual model for segmenting and annotating a documentary photograph corpus (DPC). In xxx, xxx.
• 顾曰国, 2002, 北京地区现场即席话语语料库的取样与代表性问题，见中国社会科学院世界经济研究中心编，《全球化与21世纪——首届“中法学术论坛”论文集》。北京：社会科学文献出版社。484-490页。
• 顾曰国, 2007, 多媒体、多模态学习剖析。《外语电化教学》第2期, 3-12页。
• 顾曰国, 2011, 当代语言学的波形发展主题三:语言、媒介载体与技术。《当代语言学》第01期，22-48页。
Thanks to:

- Aijun Li
- Andrea Deme
- Danqing Liu
- Huba Bartos
- Jianhua Hu
- Katalin Mády
- Kenesei István
- Yueguo Gu
- Zhengda Tang
- The Research Institute of Linguistics of the Hungarian Academy of Sciences
- Institute of Linguistics of Chinese Academy of Social Sciences