Object agreement in Hungarian
Person features, syntax and morphology

András Bárány
Research Institute for Linguistics, Hungarian Academy of Sciences

1 March 2015
Object agreement with personal pronouns

(1) a. Én lát-ok valaki-t.
 I see-1SG.SBJ someone-ACC
 ‘I see someone.’

 b. Én lát-om Ő-t.
 I see-1SG.OBJ s/he-ACC
 ‘I see her/him.’

(2) a. Én lát-lak téged.
 I see-1SG>2 you.SG.ACC
 ‘I see you (sg.).’

 b. Ő lát téged.
 s/he see-3SG.SBJ you.SG.ACC
 ‘S/he sees you (sg.).’

1 → 2: direct
3 → 2: inverse
Main claims

Person features

Person features can grammaticalise referential or semantic properties. In Hungarian, they grammaticalise referentiality.

Syntax

Syntax is sensitive to person features: \(v \) in Hungarian only agrees with direct objects with person features.

Morphology

All personal pronouns trigger agreement in Hungarian, but it is only visible in direct configurations: “downwards” on 1 > 2 > 3
Hungarian object agreement

Differential object agreement in Hungarian

(3) a. Lát-ok egy nyelvész-t.
 see-1SG.SBJ a linguist-ACC
 ‘I see a linguist.’

b. Lát-om a nyelvész-t.
 see-1SG.OBJ a linguist-ACC
 ‘I see the linguist.’

▶ What triggers agreement? Definiteness?

▶ possessive DOs are not always definite, but trigger agreement
▶ melyik ‘which’, mindegyik ‘each’ do — minden ‘every’ does not
▶ personal pronouns: engem ‘I.ACC’, téged ‘you.SG.ACC’?
Coppock (2013) and Bartos (1999)

- Coppock suggests that some lexical items are specified as [DEF] (roughly presuppositional and anaphoric)
 - Works for *melyik* ‘which’, *mindegyik* ‘each’ vs. *minden* ‘every’
 - 1st/2nd person do not agree, because they are indexical

- Bartos argues that syntax plays a crucial role: all and only DPs trigger object agreement
 - 1st/2nd person not DPs?
Object agreement and person: two types of analysis

- **Only third person** triggers agreement
 - Bartos (1999), Coppock and Wechsler (2012), Coppock (2013), Rocquet (2013): -lAk is special, lack of agreement with 1st/2nd is regular

- **Any person** can agree
 - den Dikken (2006), É. Kiss (2013), Bárány (2015): -lAk is regular, lack of agreement with 1st/2nd is special

- I adopt the second approach: all personal pronouns agree
 - There are arguments for this!
1: Several types of personal pronouns agree

- **anaphoric:** Ő-t ‘her/him-ACC’

(4) Lát-om Ő-t.
see-1SG.OBJ s/he-ACC
‘I see her/him.’

- **indexical:** Őn-t ‘you (formal)’, Téged ‘you.SG.ACC’

(5) Lát-om Őn-t.
see-1SG.OBJ you.-ACC
‘I see you (sg.).’ (formal)

- **reflexives:** Magam-at ‘myself’
2: Object-drop vs. ellipsis

- Connection between object-drop and object agreement

(6) a. Lát-ok.
 see-1SG.SBJ
 ‘I see.’

b. Lát-ok valaki-t.
 see-1SG.SBJ someone-ACC
 ‘I see someone.’

c. Lát-om (ő-t).
 see-1SG.OBJ s/he-ACC
 ‘I see her/him.’

d. Lát-lak (téged).
 see-1SG>2 you.SG.ACC
 ‘I see you (sg.).’
2: Object-drop vs. ellipsis (cont’d)

▶ Dropped objects can control a depictive secondary predicate

(7) a. (Én)i lát-ok részegeni.
 I see-1SG.SBJ drunk
 ‘I see drunk.’

 b. (Én)i lát-ok valaki-tj részegeni/j.
 I see-1SG.SBJ someone-ACC drunk
 ‘I see someone drunk.’

 c. (Én)i Lát-om (ő-tj) részegeni/j.
 I see-1SG.OBJ s/he-ACC drunk
 ‘I see her/him drunk.’

 d. (Én)i lát-lak (tégedj) részegeni/j.
 I see-1SG>2 you.sg.ACC drunk
 ‘I see you (sg.) drunk.’
2: Object-drop vs. ellipsis (cont’d)

(8) **Context:** Látsz valakit? ‘Do you see someone?’
 (Én\textsubscript{i}) lát-ok.
 I see
 ‘I do.’ (lit. ‘I see.’)

(9) **Context:** Látsz valakit? ‘Do you see someone?’
 (Én\textsubscript{i}) lát-ok részegen\textsubscript{i/j}.
 I see drunk
 intended: ‘I do (see someone) drunk.’ (lit. ‘I see drunk.’)
 ▶ elided non-referential object cannot control secondary predicate
2: Object-drop vs. ellipsis (cont’d)

(10) a. \((T_e_i) \ lát\text{-}sz \ (\text{engem}_j) \ \text{részegen}_{i/j}.
 \text{You see-2SG.SBJ I.ACC drunk} \ ‘\text{You see (me) drunk.’}

b. \((Ő_i) \ lát \ (\text{engem}_j) \ / \ (\text{téged}_k) \ \text{részegen}_{i/j/k}.
 \text{s/he see.3SG.SBJ I.ACC you.SG.ACC drunk} \ ‘\text{S/he sees me drunk.’}

- Agreement is not visible, but \(lát\text{-}sz\) and \(lát\) behave like agreeing forms
- \(\text{engem, téged}\) pattern like \(ő\text{-}t\) ‘s/he-ACC’
- But: \(\text{Kérsz sör? — Melegen}_i \text{ nem kérek sört}_i.\) (É. Kiss, p.c.)
 - non-referential?
3: Cross-linguistic evidence

Table 1: Object agreement with personal pronouns in Hungarian

<table>
<thead>
<tr>
<th>SBJ → OBJ</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>lát-lak</td>
<td>OBJ</td>
<td>lát-om</td>
</tr>
<tr>
<td>2</td>
<td>lát-sz</td>
<td>OBJ</td>
<td>lát-od</td>
</tr>
<tr>
<td>3</td>
<td>lát</td>
<td>SBJ</td>
<td>lát-ja</td>
</tr>
</tbody>
</table>

12/38
3: Cross-linguistic evidence (cont’d)

Table 2: Direct and inverse agreement in Mohawk (Béjar and Rezac 2009, 59)

<table>
<thead>
<tr>
<th>SBJ → OBJ</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I see you</td>
<td>direct</td>
<td>I see her/him</td>
</tr>
<tr>
<td>2</td>
<td>You see me</td>
<td>inverse</td>
<td>You see her/him</td>
</tr>
<tr>
<td>3</td>
<td>S/he sees me</td>
<td>inverse</td>
<td>S/he sees her</td>
</tr>
</tbody>
</table>

(11) (h)s-\textit{k}-see
2-1-see
‘You see me.’

[Mohawk]

(Béjár and Rezac 2009: 59)
Interim summary

- We know that 3rd/2nd pronouns can agree in Hungarian
- Indexicality/anaphoricity does not derive agreement split
- Only agreeing objects can be dropped and control secondary predicates?
- Cross-linguistic evidence for agreement in inverse contexts
The idea

- Person features (1st, 2nd, 3rd) are complex
- A probe can agree repeatedly, **but only if** it gains features
 - Cyclic Agree (Béjar and Rezac 2009)
- **Object agreement** when \(v \) is valued by two arguments: \(v[1, 2] \)
- **Subject agreement** when \(v \) is valued by a single argument: \(v[1] \)
- Hierarchical effect **without** a hierarchy
 - \(1 > 2 > 3 \)
Person features

 - complex, representing feature geometries or
 - sets of features:
 - [1] = { SP(eaker), PART(icipant), π }
 - [2] = { PART(icipant), π }
 - [3] = { π }
 - [] = {}

- There are four persons, rather than three
Cyclic Agree

▶ v is a probe
 ▶ it enters Agree relations with matching goals
 ▶ only goals with person features are visible

▶ v has unvalued sets of features, DPs have valued sets of features

\[
\begin{align*}
\nu & \equiv [1] \\
\left[u\{\text{SP, PART, } \pi\}\right] & = 1 \\
\left[u\{\text{PART, } \pi\}\right] & = u_2 \\
\left[u\{\pi\}\right] & = u_3
\end{align*}
\]

DO

\[
\begin{align*}
\left\{\text{SP, PART, } \pi\right\} & = [1]
\end{align*}
\]

▶ proper subsets are valued (and deleted) automatically
▶ a first person argument values v fully
Cyclic Agree (cont’d)

- partial valuation

\[
\begin{align*}
\nu & = u_1 \\
\{ \text{PART, } \pi \} & = 2 \\
\{ \pi \} & = u_3
\end{align*}
\]

Valuation of [2]
Deletion of [3]

\[
\{ \text{PART, } \pi \} = [2]
\]

- [u1] not valued, \(\nu \) can continue probing

\[
\begin{align*}
\{ \text{SP, PART, } \pi \} & = [1] \\
\{ \text{PART, } \pi \} & = 2 \\
\{ \pi \} & = u_3
\end{align*}
\]

Valuation of [1]
Cyclic Agree (cont’d)

- Second cycle is only possible if the second argument’s features are a proper superset of the first argument’s features
- \(v \) agrees with the object first
- We get a “hierarchy”
- \([1] \supset [2] \supset [3]\)

Object agreement in Hungarian

Object agreement in Hungarian surfaces when \(v \) is valued by two arguments, the subject and the object.
An example: $1 \rightarrow 3$

(12)

$$T' \quad \text{SBJ} \quad [\phi \ 1, \text{SG}] \quad \text{vP}$$

$$[u\phi \ 1, 3] \quad \text{v+T}$$

A Agree

B Move

C Agree

VP

DO

$$[\phi \ 3, \text{PL}]$$
Interim summary

- v can enter several Agree relations
- only when $\Pi(SBJ) \supset \Pi(DO)$
- v can be valued as $[1, 2], [2, 3], [1, 3]$
- What about $[3, 3]$?
What about 3→3?

- 3→3 patterns with *direct* configurations in Hungarian
- not in other languages: in Mohawk, above, it counts as *inverse*
Fusion

- This is captured by fusion
- When the strongest features of T and v match, the two heads fuse:

(13) Fusion of v and T
Direct derivation: 1→2

- Én látlak téged. ‘I see you.’

(14) 1→2
(15) Fusion of v and T

\[
\begin{array}{c}
\begin{bmatrix}
[u\pi \ 1, 2]
\end{bmatrix}
\end{array}
\rightarrow
\begin{array}{c}
\begin{bmatrix}
[u\phi \ u\pi \ 1]
\end{bmatrix}
\end{array}
\rightarrow
\begin{array}{c}
\begin{bmatrix}
[u\phi \ u\# \ SG]
\end{bmatrix}
\end{array}
\rightarrow
\begin{array}{c}
\begin{bmatrix}
[u\pi \ 1, 2]
\end{bmatrix}
\end{array}
\]

\text{Fusion}
Inverse derivation: 3→2

- Ő lát tégéed. ‘S/he sees you.’

(16) 3→2
Inverse derivation and fusion: 3→3

▶ Ὠ látja őt. ‘S/he sees her/him.’

(17) 3→3

[uπ 3] [uϕ 3, SG] [φ 3, SG]
[CASE NOM] [uCASE NOM]

A Agree
B Move
C *Agree
D Agree

T'

T

v

T

SBJ

v'
(18) Fusion of ν and T

$\begin{bmatrix}
 u\pi & 3 \\
 u\phi & u\pi & 3
\end{bmatrix}$

$\begin{bmatrix}
 u\pi & 3, 3 \\
 u\# & SG
\end{bmatrix}$
Interim summary

- Two types of syntactic derivation:
 - **direct**: $\Pi(SBJ) \supset \Pi(DO)$
 - **inverse**: $\Pi(DO) \supset \Pi(SBJ)$

- Fusion allows “cheating”: 3→3 is an *inverse* derivation, but the outcome is *direct*

- Language-specific rule for a language-specific outcome
The idea

- DM: syntax manipulates bundles/sets of features (Halle and Marantz 1993 et seq.)
 - spell-out matches *vocabulary items* (VIs) to feature bundles
- Features can be manipulated before spell-out: *fusion*
- **Object agreement** when $v+T$ has two sets of features: $v+T[\alpha, \beta]$
- **Subject agreement** otherwise
- The Hungarian verb spells out a single *φ-agreement suffix*
 - *only* those with a full set of φ-features
 - if T and v do not fuse, only T has a full set
Vocabulary items

- *-lAk* \leftrightarrow [1, 2, SG]
- *-ja/-i/-e* \leftrightarrow [3, 3, SG]
- *-jUk* \leftrightarrow [1, 3, PL]
- *-játok/-itek* \leftrightarrow [2, 3, PL]
- *-ják/-ik* \leftrightarrow [3, 3, PL]

What about *-Om* (1SG.OBJ), *-Od* (2SG.OBJ)?

- wide distribution (Szabolcsi 1994)
- *ház-am* ‘my house’, *lát-t-am* ‘I saw-PST-1SG’
- *ház-ad* ‘your.SG house’
Vocabulary items (cont’d)

- Trommer (2005): -Om/-Od are **not object agreement** suffixes
 - -Om ↔ [1, sg]
 - -Od ↔ [2, sg]

- -Ok (1SG.SBJ) / -Ol/-sz (2SG.SBJ) are more specific (narrower distribution!)
 - -Ok ↔ [1, sg, +v]
 - -Ol/-sz ↔ [2, sg, +v]

- these VIs are restricted to +v contexts: no possessive suffixes
- Impoverishment derives syncretism for past tense
 - +v → Ø / [1SG, +PST]
What does this buy us?

▶ Szabolcsi (1994): curious overlap between possessive and verbal morphology
 ▶ *objective* forms in the singular, *subjective* forms in the plural
 ▶ *lát-om* ‘I see (her/him/it)’ — *ház-am* ‘my house’
 ▶ *lát-unk* ‘we see’ — *ház-unk* ‘our house’

Overlap between possessive and verbal morphology
Overlap when the least specific VI has a **single set of person features**:

\[(19) \quad /-VI/ \leftrightarrow [\alpha, \text{SG/PL}]\]
Person, syntax, and morphology

- **Person** grammaticalises referentiality in Hungarian, but
 - other properties in other languages: inverse phenomena based on animacy, topicality, etc.
 - sets of features derive hierarchical effects without hierarchies
 - referential arguments trigger agreement in Hungarian

- **Syntax** provides two types of derivations
 - direct: v is valued more than once
 - inverse: v is valued once

- **Morphology** gives rise to surface variation
 - how many suffixes are spelled out?
 - language-specific operations: $3 \rightarrow 3$ direct in Hungarian, inverse in other languages
That’s it — Thank you!

I am currently supported by OTKA Grant No. 118079, ERC_HU_15, “Az uráli nyelvek mondattanának változása aszimmetrikus kontaktushelyzetben” and much of this research has been supported by ERC Grant No. 269752 “Rethinking Comparative Syntax” (ReCoS).

Thanks to all of ReCoS, Vera Hegedűs, Orsolya Tánczos, and Katalin É. Kiss.
References I

References II

References III

